首页> 外文期刊>Knowledge-Based Systems >Extracting useful knowledge from event logs: A frequent itemset mining approach
【24h】

Extracting useful knowledge from event logs: A frequent itemset mining approach

机译:从事件日志中提取有用的知识:一种频繁的项目集挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Business process analysis is a key activity that aims at increasing the efficiency of business operations. In recent years, several data mining based methods have been designed for discovering interesting patterns in event logs. A popular type of methods consists of applying frequent itemset mining to extract patterns indicating how resources and activities are frequently used. Although these methods are useful, they have two important limitations. First, these methods are designed to be applied to original event logs. Because these methods do not consider other perspectives on the data that could be obtained by applying data transformations, many patterns are missed that may represent important information for businesses. Second, these methods can generate a large number of patterns since they only consider the minimum support as constraint to select patterns. But analyzing a large number of patterns is time-consuming for users, and many irrelevant patterns may be found. To address these issues, this paper presents an improved event log analysis approach named AllMining. It includes a novel pre-processing method to construct multiple types of transaction databases from a same original event log using transformations. This allows to extract many new useful types of patterns from event logs with frequent itemset mining techniques. To address the second issue, a pruning strategy is further developed based on a novel concept of pattern coverage, to present a small set of patterns that covers many events to decision makers. Results of experiments on real-life event logs show that the proposed approach is promising compared to existing frequent itemset mining approaches and state-of-the-art process model algorithms. (C) 2017 Elsevier B.V. All rights reserved.
机译:业务流程分析是旨在提高业务运营效率的一项关键活动。近年来,已经设计了几种基于数据挖掘的方法来发现事件日志中的有趣模式。一种流行类型的方法包括应用频繁项集挖掘以提取指示资源和活动如何被频繁使用的模式。尽管这些方法很有用,但它们有两个重要的局限性。首先,将这些方法设计为应用于原始事件日志。由于这些方法没有考虑可以通过应用数据转换获得的数据的其他观点,因此错过了许多模式,这些模式可能代表了企业的重要信息。第二,这些方法可以生成大量模式,因为它们仅将最小支持视为选择模式的约束。但是,分析大量模式对用户来说很耗时,并且可能会发现许多不相关的模式。为了解决这些问题,本文提出了一种改进的事件日志分析方法,名为AllMining。它包括一种新颖的预处理方法,可以使用转换从同一原始事件日志中构造多种类型的事务数据库。这允许使用频繁的项目集挖掘技术从事件日志中提取许多新的有用类型的模式。为了解决第二个问题,在一种新颖的模式覆盖概念的基础上,进一步开发了一种修剪策略,以向决策者展示一小套覆盖许多事件的模式。真实事件日志的实验结果表明,与现有的频繁项集挖掘方法和最新的过程模型算法相比,该方法很有希望。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号