首页> 外文期刊>Key Engineering Materials >Microarray Expression Analysis Using Seed-Based Clustering Method
【24h】

Microarray Expression Analysis Using Seed-Based Clustering Method

机译:基于种子聚类的微阵列表达分析

获取原文
获取原文并翻译 | 示例

摘要

Clustering methods have been often used to find biologically relevant groups of genes or conditions based on their expression levels. Since many functionally related genes tend to be co-expressed, by identifying groups of genes with similar expression profiles, the functionalities of unknown genes can be inferred from those of known genes in the same group. In this paper we address a novel clustering approach, called seed-based clustering, where seed genes are first systematically chosen by computational analysis of their expression profiles, and then the clusters are generated by using the seed genes as initial values for k-means clustering. The seed-based clustering method has strong mathematical foundations and requires only a few matrix computations for seed extraction. As a result, it provides stability of clustering results by eliminating randomness in the selection of initial values for cluster generation. Our empirical results reported here indicate that the entire clustering process can be systematically pursued using seed-based clustering, and that its performance is favorable compared to current approaches.
机译:聚类方法通常用于根据其表达水平来寻找基因或条件的生物学相关组。由于许多功能相关的基因倾向于共表达,因此通过鉴定具有相似表达谱的基因组,可以从同一组中的已知基因的功能中推断出未知基因的功能。在本文中,我们提出了一种新的聚类方法,称为基于种子的聚类,其中首先通过对其表达谱的计算分析来系统选择种子基因,然后使用种子基因作为k均值聚类的初始值来生成聚类。 。基于种子的聚类方法具有强大的数学基础,并且只需要很少的矩阵计算即可提取种子。结果,它通过消除为簇生成而选择初始值时的随机性,从而提供了簇结果的稳定性。我们在这里报告的经验结果表明,可以使用基于种子的聚类系统地进行整个聚类过程,并且与当前方法相比,其性能是有利的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号