首页> 外文期刊>Journal of web engineering >A HYBRID APPROACH USING PSO AND K-MEANS FOR SEMANTIC CLUSTERING OF WEB DOCUMENTS
【24h】

A HYBRID APPROACH USING PSO AND K-MEANS FOR SEMANTIC CLUSTERING OF WEB DOCUMENTS

机译:基于PSO和K均值的Web文档语义聚类混合方法

获取原文
获取原文并翻译 | 示例

摘要

With the massive growth and large volume of the web it is very difficult to recover results based on the user preferences. The next generation web architecture, semantic web reduces the burden of the user by performing search based on semantics instead of keywords. Even in the context of semantic technologies optimization problem occurs but rarely considered. In this paper Document clustering is applied to recover relevant documents. We propose a ontology based clustering algorithm using semantic similarity measure and Particle Swarm Optimization(PSO), which is applied to the annotated documents for optimizing the result. The proposed method uses Jena API and GATE tool API and the documents can be recovered based on their annotation features and relations. A preliminary experiment comparing the proposed method with K-Means shows that the proposed method is feasible and performs better than K-Means.
机译:随着Web的迅猛发展和庞大的容量,很难根据用户的喜好恢复结果。下一代Web体系结构,语义Web通过执行基于语义而不是关键字的搜索来减轻用户的负担。即使在语义技术的上下文中,也会出现优化问题,但很少考虑。本文采用文档聚类来恢复相关文档。提出了一种基于语义相似度测度和粒子群优化算法的基于本体的聚类算法,该算法被应用于带注释的文档中以优化结果。所提出的方法使用Jena API和GATE工具API,并且可以基于它们的注释特征和关系来恢复文档。将该方法与K-Means进行比较的初步实验表明,该方法可行且性能优于K-Means。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号