首页> 外文期刊>Journal of visualization >A CNN-based vortex identification method
【24h】

A CNN-based vortex identification method

机译:基于CNN的涡旋识别方法

获取原文
获取原文并翻译 | 示例

摘要

Vortex identification and visualization are important for understanding the underlying physical mechanism of the flow field and have been intensively studied recently. Local vortex identification methods could provide results in a rapid way, but they require the choice of a suitable criterion and threshold, which leads to poor robustness. Global vortex identification methods could obtain reliable results, while they require considerable user input and are computationally intractable for large-scale data sets. To address the problems described above, we present a novel vortex identification method based on the convolutional neural network (CNN). The proposed method integrates the advantages of both the local and global vortex identification methods to achieve higher precision and recall efficiently. In specific, the proposed method firstly obtains the labels of all grid points using a global and objective vortex identification method and then samples local patches around each point in the velocity field as the inputs of CNN. After that it trains the CNN to decide whether the central points of these patches belong to vortices. By this way, our method converts the vortex identification task to a binary classification problem, which could detect vortices quickly from the flow field in an objective and robust way. Extensive experimental results demonstrate the efficacy of our proposed method, and we expect this method can replace or supplement existing traditional methods.
机译:涡流识别和可视化对于理解流场的基本物理机制很重要,并且最近已经进行了深入研究。局部涡旋识别方法可以快速提供结果,但是它们需要选择合适的标准和阈值,这导致较差的鲁棒性。全局涡旋识别方法可以获得可靠的结果,但它们需要大量的用户输入,并且对于大规模数据集在计算上难以处理。为了解决上述问题,我们提出了一种基于卷积神经网络(CNN)的新颖涡旋识别方法。所提出的方法结合了局部和全局涡旋识别方法的优点,以实现更高的精度和有效的召回率。具体而言,该方法首先使用全局和客观涡旋识别方法获得所有网格点的标签,然后对速度场中每个点周围的局部斑块进行采样,作为CNN的输入。之后,它训练CNN来决定这些斑块的中心点是否属于漩涡。通过这种方式,我们的方法将涡流识别任务转换为二进制分类问题,该问题可以客观,可靠地从流场中快速检测出涡流。大量的实验结果证明了我们提出的方法的有效性,并且我们期望这种方法可以替代或补充现有的传统方法。

著录项

  • 来源
    《Journal of visualization》 |2019年第1期|65-78|共14页
  • 作者单位

    Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China|China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang, Peoples R China;

    China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang, Peoples R China;

    Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China|China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang, Peoples R China;

    China Aerodynam Res & Dev Ctr, Computat Aerodynam Inst, Mianyang, Peoples R China;

    Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China;

    Natl Univ Def Technol, Coll Comp, Changsha, Hunan, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vortex identification; CNN; Unsteady flow field;

    机译:涡旋识别;CNN;非恒定流场;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号