首页> 外文期刊>Journal of Visual Languages & Computing >A scalable, flow-and-context-sensitive taint analysis of android applications
【24h】

A scalable, flow-and-context-sensitive taint analysis of android applications

机译:对Android应用程序进行可扩展的,对流和上下文敏感的污点分析

获取原文
获取原文并翻译 | 示例

摘要

This paper focuses on scalable static analysis techniques for finding information leaks in Android apps. Finding such leaks scalably is challenging because Android apps have on average over 100 invocations of sensitive APIs, yielding a massive multi-source taint analysis problem.We present the design of STAR, a context-sensitive and flow-sensitive multi-source taint analysis aimed at tackling this problem. STAR incorporates two main ideas to achieve high performance and scalability. The first is a novel summarization technique we refer to as symbolic summarization, which is crucial for the analysis to scale well with the number of source APIs. The second is a combination of techniques aimed at efficient propagation of abstract states both within and across method boundaries. Our experiments over a dataset composed of 400,000 apps show that the proposed techniques improve performance over an IFDS-style analysis by a factor of 30 on average, and by up to four orders of magnitude on large apps.
机译:本文重点介绍可扩展的静态分析技术,以发现Android应用程序中的信息泄漏。由于Android应用平均调用了100多个敏感API,从而产生了巨大的多源污点分析问题,因此要大规模地发现此类泄漏具有挑战性。解决这个问题。 STAR结合了两个主要思想来实现高性能和可伸缩性。首先是一种新颖的汇总技术,我们称之为符号汇总,这对于根据源API的数量很好地进行分析至关重要。第二种是旨在将抽象状态在方法边界之内和之间有效传播的技术的组合。我们对由40万个应用程序组成的数据集进行的实验表明,与IFDS风格的分析相比,所提出的技术将性能提高了30倍,在大型应用程序上提高了四个数量级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号