首页> 外文期刊>Journal of Visual Languages & Computing >Crowd behaviors analysis and abnormal detection based on surveillance data
【24h】

Crowd behaviors analysis and abnormal detection based on surveillance data

机译:基于监控数据的人群行为分析与异常检测

获取原文
获取原文并翻译 | 示例

摘要

Crowd analysis and abnormal trajectories detection are hot topics in computer vision and pattern recognition. As more and more video monitoring equipments are installed in public places for public security and management, researches become urgent to learn the crowd behavior patterns through the trajectories obtained by the intelligent video surveillance technology. In this paper, the FCM (Fuzzy c-means) algorithm is adopted to cluster the source points and sink points of trajectories that are deemed as critical points into several groups, and then the trajectory clusters can be acquired. The feature information statistical histogram for each trajectory cluster which contains the motion information will be built after refining them with Hausdorff distances. Eventually, the local motion coherence between test trajectories and refined trajectory clusters will be used to judge whether they are abnormal.
机译:人群分析和异常轨迹检测是计算机视觉和模式识别中的热门话题。随着越来越多的视频监控设备安装在公共场所进行公共安全和管理,人们迫切需要通过智能视频监控技术获得的轨迹来了解人群的行为模式。本文采用FCM(Fuzzy c-means)算法将被视为关键点的轨迹的源点和汇落点聚类为几组,然后得到轨迹簇。在用Hausdorff距离细化后,将建立包含运动信息的每个轨迹簇的特征信息统计直方图。最终,将使用测试轨迹和精确轨迹簇之间的局部运动相干性来判断它们是否异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号