首页> 外文期刊>Journal of Visual Languages & Computing >Wi-Fi based city users' behaviour analysis for smart city
【24h】

Wi-Fi based city users' behaviour analysis for smart city

机译:基于Wi-Fi的城市用户对智慧城市的行为分析

获取原文
获取原文并翻译 | 示例

摘要

Monitoring, understanding and predicting city user behaviour (hottest places, trajectories, flows, etc.) is one the major topics in the context of Smart City management. People flow surveillance provides valuable information about city conditions, useful not only for monitoring and controlling the environmental conditions, but also to optimize the delivering of city services (security, clean, transport,..). In this context, it is mandatory to develop methods and tools for assessing people behaviour in the city. This paper presents a methodology to instrument the city via the placement of Wi-Fi Access Points, AP, and to use them as sensors to capture and understand city user behaviour with a significant precision rate (the understanding of city user behaviour is concretized with the computing of heat-maps, origin destination matrices and predicting user density). The first issue is the positioning of Wi-Fi AP in the city, thus a comparative analyses have been conducted with respect to the real data (i.e., cab traces) of the city of San Francisco. Several different positioning methodologies of APs have been proposed and compared, to minimize the cost of AP installation with the aim of producing the best origin destination matrices. In a second phase, the methodology was adopted to select suitable AP in the city of Florence (Italy), with the aim of observing city users behaviour. The obtained instrumented Firenze Wi-Fi network collected data for 6 months. The data has been analysed with data mining techniques to infer similarity patterns in AP area and related time series. The resulting model has been validated and used for predicting the number of AP accesses that is also related to number of city users. The research work described in this paper has been conducted in the scope of the EC funded Horizon 2020 project Resolute (http://www.resolute-eu.org ), for early warning and city resilience. (C) 2017 Elsevier Ltd. All rights reserved.
机译:监视,了解和预测城市用户的行为(最热的地方,轨迹,流量等)是智能城市管理中的主要主题之一。人流监控可提供有关城市状况的宝贵信息,不仅可用于监视和控制环境状况,而且还可用于优化城市服务(安全,清洁,运输等)的提供。在这种情况下,必须开发评估城市居民行为的方法和工具。本文介绍了一种方法,该方法可通过放置Wi-Fi接入点AP来对城市进行检测,并将其用作传感器来捕获和理解具有高精确度的城市用户行为(对城市用户行为的理解与计算热图,起点目的地矩阵并预测用户密度)。第一个问题是Wi-Fi AP在城市中的定位,因此已对旧金山市的真实数据(即出租车走线)进行了比较分析。已经提出并比较了几种不同的AP定位方法,以最大程度地减少AP安装成本,从而产生最佳的始发目的地矩阵。在第二阶段,采用该方法在佛罗伦萨市(意大利)选择合适的接入点,目的是观察城市用户的行为。获得的仪器化的Firenze Wi-Fi网络收集了6个月的数据。已使用数据挖掘技术对数据进行了分析,以推断AP区域和相关时间序列中的相似性模式。结果模型已经过验证,可用于预测与城市用户数量相关的AP接入次数。本文所述的研究工作是在EC资助的Horizo​​n 2020项目Resolute(http://www.resolute-eu.org)的范围内进行的,以进行预警和城市应变。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号