首页> 外文期刊>Journal of visual communication & image representation >Fast exhaustive multi-resolution search algorithm based on clustering for efficient image retrieval
【24h】

Fast exhaustive multi-resolution search algorithm based on clustering for efficient image retrieval

机译:基于聚类的快速穷举多分辨率搜索算法,用于有效的图像检索

获取原文
获取原文并翻译 | 示例

摘要

To find the best match for a query according to a certain similarity measure, this paper presents a fast exhaustive multi-resolution search algorithm based on image database clustering. Prior to search process, the whole image dataset is partitioned into a pre-defined number of clusters having similar feature contents. For a given query, the proposed algorithm first checks the lower bound of distances in each cluster, eliminating disqualified clusters. Next, it only examines the candidates in the surviving clusters through feature matching. To alleviate unnecessary feature-matching operations in the search procedure, the distance inequality property based on a multi-resolution data structure is employed. Simulation results show that the proposed algorithm guarantees very rapid exhaustive search.
机译:为了根据某种相似性度量找到查询的最佳匹配,本文提出了一种基于图像数据库聚类的快速穷举多分辨率搜索算法。在搜索过程之前,将整个图像数据集划分为具有相似特征内容的预定义数量的聚类。对于给定的查询,提出的算法首先检查每个聚类中距离的下限,以消除不合格的聚类。接下来,它仅通过特征匹配来检查幸存群集中的候选对象。为了减轻搜索过程中不必要的特征匹配操作,采用了基于多分辨率数据结构的距离不等式属性。仿真结果表明,该算法保证了非常快速的穷举搜索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号