首页> 外文期刊>Journal of visual communication & image representation >Face detection and tracking using a Boosted Adaptive Particle Filter
【24h】

Face detection and tracking using a Boosted Adaptive Particle Filter

机译:使用增强型自适应粒子滤波器的人脸检测和跟踪

获取原文
获取原文并翻译 | 示例

摘要

A novel algorithm, termed a Boosted Adaptive Particle Filter (BAPF), for integrated face detection and face tracking is proposed. The proposed algorithm is based on the synthesis of an adaptive particle filtering algorithm and the AdaBoost face detection algorithm. An Adaptive Particle Filter (APF), based on a new sampling technique, is proposed. The APF is shown to yield more accurate estimates of the proposal distribution and the posterior distribution than the standard Particle Filter thus enabling more accurate tracking in video sequences. In the proposed BAPF algorithm, the AdaBoost algorithm is used to detect faces in input image frames, whereas the APF algorithm is designed to track faces in video sequences. The proposed BAPF algorithm is employed for face detection, face verification, and face tracking in video sequences. Experimental results show that the proposed BAPF algorithm provides a means for robust face detection and accurate face tracking under various tracking scenarios.
机译:提出了一种用于集成人脸检测和人脸跟踪的新算法,称为增强自适应粒子滤波器(BAPF)。该算法基于自适应粒子滤波算法和AdaBoost人脸检测算法的综合。提出了一种基于新采样技术的自适应粒子滤波器。与标准的粒子过滤器相比,APF可以对提案分布和后验分布产生更准确的估计,从而可以更精确地跟踪视频序列。在提出的BAPF算法中,AdaBoost算法用于检测输入图像帧中的人脸,而APF算法设计用于跟踪视频序列中的人脸。提出的BAPF算法用于视频序列中的人脸检测,人脸验证和人脸跟踪。实验结果表明,提出的BAPF算法为在各种跟踪情况下进行鲁棒的人脸检测和准确的人脸跟踪提供了一种手段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号