首页> 外文期刊>Signal Processing, IEEE Transactions on >Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty
【24h】

Bernoulli Particle/Box-Particle Filters for Detection and Tracking in the Presence of Triple Measurement Uncertainty

机译:在三重测量不确定性的情况下用于检测和跟踪的伯努利颗粒/盒颗粒过滤器

获取原文
获取原文并翻译 | 示例

摘要

This work presents sequential Bayesian detection and estimation methods for nonlinear dynamic stochastic systems using measurements affected by three sources of uncertainty: stochastic, set-theoretic and data association uncertainty. Following Mahler's framework for information fusion, the paper develops the optimal Bayes filter for this problem in the form of the Bernoulli filter for interval measurements. Two numerical implementations of the optimal filter are developed. The first is the Bernoulli particle filter (PF), which turns out to require a large number of particles in order to achieve a satisfactory performance. For the sake of reduction in the number of particles, the paper also develops an implementation based on box particles, referred to as the Bernoulli Box-PF. A box particle is a random sample that occupies a small and controllable rectangular region of nonzero volume in the target state space. Manipulation of boxes utilizes the methods of interval analysis. The two implementations are compared numerically and found to perform remarkably well: the target is reliably detected and the posterior probability density function of the target state is estimated accurately. The Bernoulli Box-PF, however, when designed carefully, is computationally more efficient.
机译:这项工作介绍了非线性动态随机系统的顺序贝叶斯检测和估计方法,该方法使用受以下三种不确定性因素影响的测量结果:随机性,集合理论和数据关联不确定性。按照马勒的信息融合框架,本文以间隔测量的伯努利滤波器的形式开发了针对该问题的最佳贝叶斯滤波器。开发了最佳滤波器的两种数值实现。第一个是伯努利颗粒过滤器(PF),结果证明需要大量颗粒才能达到令人满意的性能。为了减少粒子数量,本文还开发了一种基于盒粒子的实现,称为Bernoulli Box-PF。盒子粒子是一种随机样本,在目标状态空间中占据一个很小且可控制的,非零体积的矩形区域。盒子的操纵利用间隔分析的方法。对这两种实现方式进行了数值比较,发现它们的性能非常出色:可以可靠地检测目标,并准确估算目标状态的后验概率密度函数。但是,精心设计的伯努利Box-PF在计算效率上更高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号