首页> 外文期刊>Journal of visual communication & image representation >Image annotation using high order statistics in non-Euclidean spaces
【24h】

Image annotation using high order statistics in non-Euclidean spaces

机译:在非欧氏空间中使用高阶统计量进行图像标注

获取原文
获取原文并翻译 | 示例

摘要

Automatic image annotation is a promising way to achieve more effective image retrieval and image analysis by using keywords associated to the image content. Due to the semantic gap between low-level visual features and high-level semantic concepts of an image, however, the performances of many existing algorithms are not so satisfactory. In this paper, a novel image classification scheme, named high order statistics based maximum a posterior (HOS-MAP), is proposed to deal with the issue of image annotation. To bridge the gap between human judgment and machine intelligence, the proposed scheme first constructs a dissimilarity representation for each image in a non-Euclidean space; then, the information of dissimilarity diffusion distribution for each image is achieved with respect to the high-order statistics of a triplet of nearest neighbor images; finally, a maximum a posteriori algorithm with the information of Gaussian Mixture Model and dissimilarity diffusion distribution is adopted to estimate the relevance between each annotation and an input un-annotated image. Experimental results on a general-purpose image database demonstrate the effectiveness and efficiency of the proposed automatic image annotation scheme.
机译:自动图像批注是通过使用与图像内容关联的关键字来实现更有效的图像检索和图像分析的有前途的方法。然而,由于图像的低层视觉特征和高层语义概念之间的语义鸿沟,许多现有算法的性能不能令人满意。本文提出了一种新的图像分类方案,即基于最大后验的高阶统计量(HOS-MAP),以解决图像标注问题。为了弥合人类判断力和机器智能之间的鸿沟,提出的方案首先为非欧几里得空间中的每个图像构造一个不相似表示;然后,根据最近邻图像三元组的高阶统计量,获得每个图像的相异性扩散分布信息。最后,采用具有高斯混合模型信息和不相似扩散分布的最大后验算法来估计每个注释和输入的未注释图像之间的相关性。在通用图像数据库上的实验结果证明了所提出的自动图像注释方案的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号