首页> 外文期刊>Journal of visual communication & image representation >Dictionary learning based reconstruction for distributed compressed video sensing
【24h】

Dictionary learning based reconstruction for distributed compressed video sensing

机译:基于字典学习的分布式压缩视频感知重建

获取原文
获取原文并翻译 | 示例

摘要

Distributed compressed video sensing (DCVS) is a framework that integrates both compressed sensing and distributed video coding characteristics to achieve a low-complexity video coding. However, how to design an efficient reconstruction by leveraging more realistic signal models that go beyond simple sparsity is still an open challenge. In this paper, we propose a novel "undersampled" correlation noise model to describe compressively sampled video signals, and present a maximum-likelihood dictionary learning based reconstruction algorithm for DCVS, in which both the correlation and sparsity constraints are included in a new probabilistic model. Moreover, the signal recovery in our algorithm is performed during the process of dictionary learning, instead of being employed as an independent task. Experimental results show that our proposal compares favorably with other existing methods, with 0.1-3.5 dB improvements in the average PSNR, and a 2-9 dB gain for non-key frames when key frames are subsam-pled at an increased rate.
机译:分布式压缩视频感测(DCVS)是一个框架,它集成了压缩感测和分布式视频编码特性,以实现低复杂度的视频编码。然而,如何通过利用超出简单稀疏性的更真实的信号模型来设计有效的重构仍然是一个开放的挑战。在本文中,我们提出了一种新颖的“欠采样”相关噪声模型来描述压缩采样的视频信号,并提出了基于最大似然字典学习的DCVS重建算法,其中,相关性和稀疏性约束都包含在新的概率模型中。而且,我们算法中的信号恢复是在字典学习过程中执行的,而不是被用作独立任务。实验结果表明,我们的建议与其他现有方法相比具有优势,平均PSNR改善了0.1-3.5 dB,当关键帧以更高的速率被采样时,非关键帧的增益为2-9 dB。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号