首页> 外文期刊>Journal of visual communication & image representation >Robust gait recognition via discriminative set matching
【24h】

Robust gait recognition via discriminative set matching

机译:通过区分集匹配进行稳健的步态识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a framework for gait recognition across varying views and walking conditions based on gait sequences collected from multiple viewpoints. Different from most existing view-dependent gait recognition systems, we devise a new Multiview Subspace Representation (MSR) method which considers gait sequences collected from different views of the same subject as a feature set and extracts a linear subspace to describe the feature set. Subspace-based feature representation methods measure the variances among samples, and can handle certain intra-subject variations. To better exploit the discriminative information from these subspaces for recognition, we further propose a marginal canonical correlation analysis (MCCA) method which maximizes the margins of interclass subspaces within a neighborhood. Experimental results on a widely used multiview gait database are presented to demonstrate the effectiveness of the proposed framework.
机译:在本文中,我们提出了一个框架,该框架基于从多个角度收集的步态序列,在不同的视图和步行条件下进行步态识别。与大多数现有的依赖于视图的步态识别系统不同,我们设计了一种新的多视图子空间表示(MSR)方法,该方法将从同一对象的不同视图收集的步态序列视为特征集,并提取一个线性子空间来描述特征集。基于子空间的特征表示方法可测量样本之间的差异,并可以处理某些对象内部的差异。为了更好地利用这些子空间中的判别信息进行识别,我们进一步提出了一种边际规范相关分析(MCCA)方法,该方法可以最大化邻域内类间子空间的边距。提出了在广泛使用的多视图步态数据库上的实验结果,以证明所提出框架的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号