首页> 外文期刊>Journal of visual communication & image representation >Online image search result grouping with MapReduce-based image clustering and graph construction for large-scale photos
【24h】

Online image search result grouping with MapReduce-based image clustering and graph construction for large-scale photos

机译:使用基于MapReduce的图像聚类和大型照片图形构建的在线图像搜索结果分组

获取原文
获取原文并翻译 | 示例

摘要

current image search system uses pagea image list to snow searcn results. However, tne problems such as query ambiguity make users hard to find search targets in such image list. In this work, we propose an image search result grouping system that summarizes image search results in semantic and visual groups. We use MapReduce-based image graph construction and image clustering methods to deal with scalability problem on this system. By precomputing image graphs and image clusters at offline stage, this system can be efficient at responding user query. The experiments on two large scale Flickr image datasets are conducted for our system. Compared with using single machine, our graph construction method is 69 times faster. We conduct a comprehensive user study to compare our approach with state-of-the-art baseline methods. We find that our approach generates competent image groups with a 2-100 times speeded-up.
机译:当前的图像搜索系统使用pagea图像列表来搜索结果。但是,诸如查询歧义之类的问题使得用户难以在这种图像列表中找到搜索目标。在这项工作中,我们提出了一种图像搜索结果分组系统,该系统将语义和视觉组的图像搜索结果进行汇总。我们使用基于MapReduce的图像图构造和图像聚类方法来处理该系统上的可伸缩性问题。通过在离线阶段预先计算图像图和图像簇,该系统可以有效地响应用户查询。针对我们的系统在两个大型Flickr图像数据集上进行了实验。与使用单机相比,我们的图形构建方法快69倍。我们进行了全面的用户研究,以将我们的方法与最新的基线方法进行比较。我们发现,我们的方法能够以2到100倍的速度生成胜任的图像组。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号