首页> 外文期刊>Journal of visual communication & image representation >Gaussian-Hermite moment-based depth estimation from single still image for stereo vision
【24h】

Gaussian-Hermite moment-based depth estimation from single still image for stereo vision

机译:基于高斯-赫尔姆特矩的单个静止图像深度估计的立体视觉

获取原文
获取原文并翻译 | 示例

摘要

Depth information of objects plays a significant role in image-based rendering. Traditional depth estimation techniques use different visual cues including the disparity, motion, geometry, and defocus of objects. This paper presents a novel approach of focus cue-based depth estimation for still images using the Gaussian-Hermite moments (GHMs) of local neighboring pixels. The GHMs are chosen due to their superior reconstruction ability and invariance properties to intensity and geometric distortions of objects as compared to other moments. Since depths of local neighboring pixels are significantly correlated, the Laplacian matting is employed to obtain final depth map from the moment-based focus map. Experiments are conducted on images of indoor and outdoor scenes having objects with varying natures of resolution, edge, occlusion, and blur contents. Experimental results reveal that the depth estimated from GHMs can provide anaglyph images with stereo quality better than that provided by existing methods using traditional visual cues. (C) 2016 Elsevier Inc. All rights reserved.
机译:对象的深度信息在基于图像的渲染中起着重要作用。传统的深度估计技术使用不同的视觉提示,包括视差,运动,几何形状和对象散焦。本文提出了一种新的基于焦点提示的静态图像深度估计的新方法,该方法使用局部相邻像素的高斯-赫尔姆特矩(GHM)。选择GHM的原因是,与其他时刻相比,GHM具有出色的重建能力以及对物体强度和几何变形的不变性。由于局部相邻像素的深度显着相关,因此采用拉普拉斯消光法从基于矩的焦点图获得最终深度图。对室内和室外场景的图像进行实验,这些图像的对象具有不同的分辨率,边缘,遮挡和模糊内容。实验结果表明,从GHM估计的深度可以提供立体效果更好的浮雕图像,这要比使用传统视觉提示的现有方法提供的立体效果更好。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号