首页> 外文期刊>Journal of visual communication & image representation >Improved road centerlines extraction in high-resolution remote sensing images using shear transform, directional morphological filtering and enhanced broken lines connection
【24h】

Improved road centerlines extraction in high-resolution remote sensing images using shear transform, directional morphological filtering and enhanced broken lines connection

机译:使用剪切变换,方向形态滤波和增强的虚线连接,改进了高分辨率遥感影像中的道路中心线提取

获取原文
获取原文并翻译 | 示例

摘要

Road information plays an important role in many civilian and military applications. Road centerlines extraction from high-resolution remote sensing images can be used to update a transportation database. However, it is difficult to extract a complete road network from high-resolution images, especially when the color of road is close to that of background. This paper proposes an improved method for road centerlines extraction, which is based on shear transform, directional segmentation, shape features filtering, directional morphological filtering, tensor voting, multivariate adaptive regression splines (MARS) and enhanced broken lines connection. The proposed method consists of five steps. Firstly, directional segmentation based on spectral information and shear transform is used to segment the images for obtaining the initial road map. Shear transform is introduced to overcome the disadvantage of the loss of the road segment information. Secondly, we perform hole filling to remove the holes due to noise in some road regions. Thirdly, reliable road segments are extracted by road shape features and directional morphological filtering. Directional morphological filtering can separate road from the neighboring non-road objects to ensure the independence of each road target candidate. Fourthly, tensor voting and MARS are exploited to extract smooth road centerlines, which overcome the shortcoming that the road centerlines extracted by the thinning algorithm have many spurs. Finally, we propose an enhanced broken lines connection algorithm to generate a complete road network, in which a new measure function is constructed and spectral similarity is introduced. We evaluate the performance on the high-resolution aerial and QuickBird satellite images. The results demonstrate that the proposed method is promising. (C) 2016 Elsevier Inc. All rights reserved.
机译:道路信息在许多民用和军事应用中起着重要作用。从高分辨率遥感影像中提取的道路中心线可用于更新交通数据库。但是,很难从高分辨率图像中提取出完整的道路网络,尤其是当道路的颜色接近背景色时。本文提出了一种改进的道路中心线提取方法,该方法基于剪切变换,方向分割,形状特征滤波,方向形态滤波,张量投票,多元自适应回归样条(MARS)和增强的虚线连接。所提出的方法包括五个步骤。首先,基于光谱信息和剪切变换的方向分割被用于分割图像以获得初始路线图。引入剪切变换以克服路段信息丢失的缺点。其次,我们执行孔填充以去除某些道路区域中由于噪声引起的孔。第三,通过道路形状特征和方向形态学滤波提取可靠的路段。定向形态滤波可以将道路与相邻的非道路对象分开,以确保每个道路目标候选者的独立性。第四,利用张量投票和MARS提取平滑的道路中心线,克服了稀疏算法提取的道路中心线存在许多毛刺的缺点。最后,我们提出了一种增强的虚线连接算法来生成完整的道路网络,其中构造了新的测量函数并引入了光谱相似性。我们评估高分辨率航空和QuickBird卫星图像的性能。结果表明,该方法是有前途的。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号