首页> 外文期刊>Journal of visual communication & image representation >Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment
【24h】

Blind quality index for camera images with natural scene statistics and patch-based sharpness assessment

机译:具有自然场景统计信息和基于色块的清晰度评估的摄像机图像盲质量指数

获取原文
获取原文并翻译 | 示例

摘要

The current image quality metrics work on the assumption that an image contains single and simulated distortions which are not representative of real camera images. In this paper we address the problem of quality assessment of camera images from two respects, natural scene statistics (NSS) and local sharpness, and associated three types of features. The first type of four features measures the naturalness of an image, inspired by a recent finding that there exists high correlation between structural degradation information and free energy entropy on natural scene images and this regulation will be gradually devastated as more distortions are introduced. The second type of four features originates from an observation concerning the NSS that a broad spectrum of statistics of distorted images can be caught by the generalized Gaussian distribution (GGD). Both the two types of features above belong to the NSS-based models, but they come from the considerations of local auto-regression (AR) and global histogram, respectively. The third type of three features focuses on estimating the local sharpness, which works by computing log-energies in discrete wavelet transform domain. Finally our quality metric is achieved via a SVR-based machine learning tool, and its performance is proved to be statistically better than state-of-the-art competitors on the CID2013 database dedicated to the quality assessment of camera images. (C) 2016 Elsevier Inc. All rights reserved.
机译:当前的图像质量度量基于这样的假设,即图像包含不代表真实相机图像的单个和模拟失真。在本文中,我们从自然景物统计量(NSS)和局部清晰度以及相关的三种类型的特征两个方面解决了相机图像质量评估的问题。四种特征中的第一种测量图像的自然性,这是受最近的发现启发的,该发现是自然场景图像上的结构退化信息与自由能熵之间存在高度相关性,随着更多失真的引入,这种调节将逐渐被破坏。四种特征的第二种类型源自有关NSS的观察,即广义高斯分布(GGD)可以捕获畸变图像的广泛统计范围。上面的两种类型的特征都属于基于NSS的模型,但是它们分别来自局部自回归(AR)和全局直方图的考虑。这三种特征的第三种类型集中在估计局部清晰度上,这是通过计算离散小波变换域中的对数能量来进行的。最终,我们的质量指标是通过基于SVR的机器学习工具实现的,其性能在统计学上优于CID2013数据库(专门用于相机图像质量评估)上的最新竞争对手。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号