首页> 外文期刊>Image Processing, IEEE Transactions on >Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality
【24h】

Blind Image Quality Assessment: From Natural Scene Statistics to Perceptual Quality

机译:盲图像质量评估:从自然场景统计到感知质量

获取原文
获取原文并翻译 | 示例

摘要

Our approach to blind image quality assessment (IQA) is based on the hypothesis that natural scenes possess certain statistical properties which are altered in the presence of distortion, rendering them un-natural; and that by characterizing this un-naturalness using scene statistics, one can identify the distortion afflicting the image and perform no-reference (NR) IQA. Based on this theory, we propose an (NR)/blind algorithm—the Distortion Identification-based Image Verity and INtegrity Evaluation (DIIVINE) index—that assesses the quality of a distorted image without need for a reference image. DIIVINE is based on a 2-stage framework involving distortion identification followed by distortion-specific quality assessment. DIIVINE is capable of assessing the quality of a distorted image across multiple distortion categories, as against most NR IQA algorithms that are distortion-specific in nature. DIIVINE is based on natural scene statistics which govern the behavior of natural images. In this paper, we detail the principles underlying DIIVINE, the statistical features extracted and their relevance to perception and thoroughly evaluate the algorithm on the popular LIVE IQA database. Further, we compare the performance of DIIVINE against leading full-reference (FR) IQA algorithms and demonstrate that DIIVINE is statistically superior to the often used measure of peak signal-to-noise ratio (PSNR) and statistically equivalent to the popular structural similarity index (SSIM). A software release of DIIVINE has been made available online: http://live.ece.utexas.edu/research/quality/DIIVINE_release.zip for public use and evaluation.
机译:我们进行盲图质量评估(IQA)的方法基于以下假设:自然场景具有某些统计属性,这些属性在存在失真的情况下会发生变化,从而使其不自然。通过使用场景统计数据来表征这种不自然,可以识别出影响图像的失真并执行无参考(NR)IQA。基于此理论,我们提出了一种(NR)/盲算法-基于失真识别的图像真实性和完整性评估(DIIVINE)指数-无需参考图像即可评估失真图像的质量。 DIIVINE基于两阶段框架,涉及失真识别和特定于失真的质量评估。与本质上特定于失真的大多数NR IQA算法相比,DIIVINE能够评估多种失真类别下失真图像的质量。 DIIVINE基于自然场景统计数据,该统计数据控制自然图像的行为。在本文中,我们详细介绍了DIIVINE的基本原理,提取的统计特征及其与感知的相关性,并在流行的LIVE IQA数据库上彻底评估了该算法。此外,我们比较了DIIVINE与领先的全参考(FR)IQA算法的性能,并证明DIIVINE在统计上优于常用的峰值信噪比(PSNR)度量,并且在统计上等同于流行的结构相似性指数(SSIM)。 DIIVINE的软件版本已在线提供:http://live.ece.utexas.edu/research/quality/DIIVINE_release.zip,供公众使用和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号