首页> 外文期刊>Journal of visual communication & image representation >Underwater image processing method for fish localization and detection in submarine environment
【24h】

Underwater image processing method for fish localization and detection in submarine environment

机译:水下环境中鱼类定位与检测的水下图像处理方法

获取原文
获取原文并翻译 | 示例

摘要

Object detection is an important process in image processing, it aims to detect instances of semantic objects of a certain class in digital images and videos. Object detection has applications in many areas of computer vision such as underwater fish detection. In this paper we present a method for preprocessing and fish localization in underwater images. We are based on a Poisson Gauss theory, because it can accurately describe the noise present in a large variety of imaging systems. In the preprocessing step we denoise and restore the raw images. These images are split into regions utilizing the mean shift algorithm. For each region, statistical estimation is done independently in order to combine regions into objects. The method is tested under different underwater conditions. Experimental results show that the proposed approach outperforms state of the art methods. (C) 2016 Elsevier Inc. All rights reserved.
机译:对象检测是图像处理中的重要过程,旨在检测数字图像和视频中特定类别的语义对象的实例。对象检测在计算机视觉的许多领域都有应用,例如水下鱼类检测。在本文中,我们提出了一种在水下图像中进行预处理和鱼类定位的方法。我们基于泊松高斯(Poisson Gauss)理论,因为它可以准确描述各种成像系统中存在的噪声。在预处理步骤中,我们对原始图像进行去噪和还原。利用均值平移算法将这些图像划分为多个区域。对于每个区域,统计估计独立完成,以便将区域组合为对象。该方法在不同的水下条件下进行了测试。实验结果表明,所提出的方法优于现有方法。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号