首页> 外文期刊>Journal of visual communication & image representation >A multi-object image segmentation C-V model based on region division and gradient guide
【24h】

A multi-object image segmentation C-V model based on region division and gradient guide

机译:基于区域划分和梯度导引的多目标图像分割C-V模型

获取原文
获取原文并翻译 | 示例

摘要

The Chan-Vese (C-V) model is an ineffective method for processing images in which the intensity is inhomogeneous. This is especially true for multi-object segmentation, in which the target may be missed or excessively segmented. In addition, for images with rich texture information, the processing speed of the C-V is slow. To overcome these problems, this paper proposes an effective multi-object C-V segmentation model based on region division and gradient guide. First, a rapid initial contour search is conducted using Otsu's method. This contour line becomes the initial contour for our multi-object segmentation C-V model based on a gradient guide. To achieve the multi-object segmentation the image is then converted to a single level set whose evolution is controlled using an adaptive gradient. The feasibility of the proposed model is analyzed theoretically, and a number of simulation experiments are conducted to validate its effectiveness. (C) 2016 Elsevier Inc. All rights reserved.
机译:Chan-Vese(C-V)模型是处理强度不均匀的图像的无效方法。对于多目标分割尤其如此,其中目标可能会丢失或过度分割。另外,对于具有丰富纹理信息的图像,C-V的处理速度很慢。为了克服这些问题,本文提出了一种基于区域划分和梯度引导的有效的多目标C-V分割模型。首先,使用大津的方法进行快速的初始轮廓搜索。该轮廓线成为基于梯度引导的多对象分割C-V模型的初始轮廓。为了实现多目标分割,然后将图像转换为单个级别集,并使用自适应梯度控制其演化。从理论上分析了该模型的可行性,并进行了许多仿真实验以验证其有效性。 (C)2016 Elsevier Inc.保留所有权利。

著录项

  • 来源
  • 作者单位

    Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Liaoning Provin, Peoples R China|Liaoning Normal Univ, Sch Math, Dalian 116029, Liaoning Provin, Peoples R China;

    Liaoning Normal Univ, Sch Math, Dalian 116029, Liaoning Provin, Peoples R China;

    Liaoning Normal Univ, Sch Math, Dalian 116029, Liaoning Provin, Peoples R China;

    Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Liaoning Provin, Peoples R China;

    Liaoning Normal Univ, Sch Comp & Informat Technol, Dalian 116029, Liaoning Provin, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Multi-object image segmentation; C-V model; Gradient guide; Region division;

    机译:多目标图像分割C-V模型梯度引导区域划分;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号