首页> 外文期刊>Journal of visual communication & image representation >Robust face anti-spoofing with depth information
【24h】

Robust face anti-spoofing with depth information

机译:具有深度信息的强大人脸防欺骗

获取原文
获取原文并翻译 | 示例

摘要

With the prevalence of face authentication applications, the prevention of malicious attack from fake faces such as photos or videos, i.e., face anti-spoofing, has attracted much attention recently. However, while an increasing number of works on the face anti-spoofing have been reported based on 2D RGB cameras, most of them cannot handle various attacking methods. In this paper we propose a robust representation jointly modeling 2D textual information and depth information for face anti-spoofing. The textual feature is learned from 2D facial image regions using a convolutional neural network (CNN), and the depth representation is extracted from images captured by a Kinect. A face in front of the camera is classified as live if it is categorized as live using both cues. We collected a face anti-spoofing experimental dataset with depth information, and reported extensive experimental results to validate the robustness of the proposed method. (c) 2017 Elsevier Inc. All rights reserved.
机译:随着面部认证应用的普及,防止来自照片或视频等伪面孔的恶意攻击(即面部防欺骗)近来引起了广泛关注。但是,尽管据报道基于2D RGB相机的面部防欺骗作品越来越多,但其中大多数无法处理各种攻击方法。在本文中,我们提出了一种鲁棒的表示方法,用于联合建模2D文本信息和深度信息,以进行面部防欺骗。使用卷积神经网络(CNN)从2D面部图像区域中学习文本特征,并从Kinect捕获的图像中提取深度表示。如果同时使用两个提示将镜头前的脸部分类为实时面部,则该面部被分类为实时面部。我们收集了具有深度信息的面部反欺骗实验数据集,并报告了广泛的实验结果,以验证所提出方法的鲁棒性。 (c)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号