首页> 外文期刊>Journal of visual communication & image representation >Massive parallelization of approximate nearest neighbor search on KD-tree for high-dimensional image descriptor matching
【24h】

Massive parallelization of approximate nearest neighbor search on KD-tree for high-dimensional image descriptor matching

机译:高维图像描述符匹配的KD树上近似最近邻搜索的大规模并行化

获取原文
获取原文并翻译 | 示例

摘要

To overcome the high computing cost associated with high-dimensional digital image descriptor matching, this paper presents a massively parallel approximate nearest neighbor search (ANNS) on K-dimensional tree (RD-tree) on the modern massively parallel architectures (MPA). The proposed algorithm is of comparable quality to traditional sequential counterpart on central processing unit (CPU). However, it achieves a high speedup factor of 121 when applied to high-dimensional real-world image descriptor datasets. The algorithm is also studied for factors that impact its performance to obtain the optimal runtime configurations for various datasets. The performance of the proposed parallel ANNS algorithm is also verified on typical 3D image matching scenarios. With the classical local image descriptor signature of histograms of orientations (SHOT), the parallel image descriptor matching can achieve speedup of up to 128. Our implementation will potentially benefit realtime image descriptor matching in high dimensions. (C) 2017 Elsevier Inc. All rights reserved.
机译:为了克服与高维数字图像描述符匹配相关的高计算成本,本文提出了在现代大规模并行体系结构(MPA)上对K维树(RD-tree)进行大规模并行近似最近邻搜索(ANNS)。所提算法的质量与中央处理器(CPU)上的传统顺序对等算法相当。但是,将其应用于高维真实世界图像描述符数据集时,可实现121的高加速因子。还研究了该算法的影响其性能的因素,以获得各种数据集的最佳运行时配置。在典型的3D图像匹配场景下,还验证了所提出的并行ANNS算法的性能。利用经典的方向直方图本地图像描述符签名(SHOT),并行图像描述符匹配可以实现高达128的加速。我们的实现将潜在地受益于高维度上的实时图像描述符匹配。 (C)2017 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号