首页> 外文期刊>Journal of visual communication & image representation >Satellite image classification using Genetic Algorithm trained radial basis function neural network, application to the detection of flooded areas
【24h】

Satellite image classification using Genetic Algorithm trained radial basis function neural network, application to the detection of flooded areas

机译:遗传算法训练的径向基函数神经网络在卫星图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a semi supervised method for classification of satellite images based on Genetic Algorithm (GA) and Radial Basis Function Neural Network (RBFNN) is proposed. Satellite image classification problem has two major concerns to be addressed. The first issue is mixed pixel problem and the second issue is handling large amount of data present in these images. RBFNN function is an efficient network with a large set of tunable parameters. This network is able to generalize the results and is immune to noise. A RBFNN has learning ability and can appropriately react to unseen data. This makes the network a good choice for satellite images. The efficiency of RBFNN is greatly influenced by the learning algorithm and seed point selection. Therefore, in this paper spectral indices are used for seed selection and GA is used to train the network. The proposed method is used to classify the Landsat 8 OLI images of Dongting Lake in South China. The application of this method is shown for detection of flooded area over this region. The performance of the proposed method was analyzed and compared with three existing methods and the error matrix was computed to test the performance of the method. The method yields high producer's accuracy, consumer's accuracy and kappa coefficient value which indicated that the proposed classifier is highly effective and efficient. (C) 2016 Elsevier Inc. All rights reserved.
机译:提出了一种基于遗传算法和径向基函数神经网络的半监督分类卫星图像的方法。卫星图像分类问题有两个主要问题要解决。第一个问题是混合像素问题,第二个问题是处理这些图像中存在的大量数据。 RBFNN功能是具有大量可调参数的高效网络。该网络能够概括结果,并且不受噪声影响。 RBFNN具有学习能力,可以对看不见的数据做出适当的反应。这使该网络成为获取卫星图像的理想选择。学习算法和种子点选择极大地影响了RBFNN的效率。因此,在本文中,光谱索引用于种子选择,而遗传算法用于训练网络。该方法用于对华南洞庭湖Landsat 8 OLI图像进行分类。示出了该方法在该区域上的淹没区域的检测中的应用。分析了该方法的性能,并与三种现有方法进行了比较,并计算了误差矩阵以检验该方法的性能。该方法具有较高的生产者准确度,消费者准确度和kappa系数值,表明所提出的分类器是高效有效的。 (C)2016 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号