首页> 外文期刊>Journal of visual communication & image representation >Face spoofing detection with local binary pattern network
【24h】

Face spoofing detection with local binary pattern network

机译:利用本地二进制模式网络进行人脸欺骗检测

获取原文
获取原文并翻译 | 示例

摘要

Nowadays, face biometric based access control systems are becoming ubiquitous in our daily life while they are still vulnerable to spoofing attacks. So developing robust and reliable methods to prevent such frauds is unavoidable. As deep learning techniques have achieved satisfactory performances in computer vision, they have also been applied to face spoofing detection. However, the numerous parameters in these deep learning based detection methods cannot be updated to optimum due to limited data. Local Binary Pattern (LBP), effective features for face recognition, have been employed in face spoofing detection and obtained promising results. Considering the similarities between LBP extraction and convolutional neural network (CNN) that the former can be accomplished by using fixed convolutional filters, we propose a novel end-to-end learnable LBP network for face spoofing detection. Our network can significantly reduce the number of network parameters by combing learnable convolutional layers with fixed-parameter LBP layers that are comprised of sparse binary filters and derivable simulated gate functions. Compared with existing deep leaning based detection methods, the parameters in our fully connected layers are up to 64x savings. Conducting extensive experiments on two standard spoofing databases, i.e., Relay-Attack and CASIA-FA, our proposed LBP network substantially outperforms the state-of-the-art methods.
机译:如今,基于面部生物特征的访问控制系统在我们的日常生活中变得无处不在,尽管它们仍然容易受到欺骗攻击。因此,不可避免的是要开发强大而可靠的方法来防止此类欺诈。随着深度学习技术在计算机视觉方面取得令人满意的性能,它们也已被应用于面部欺骗检测。但是,由于数据有限,这些基于深度学习的检测方法中的众多参数无法更新为最佳。局部二进制模式(LBP)是有效的面部识别功能,已被用于面部欺骗检测并获得了可喜的结果。考虑到LBP提取与卷积神经网络(CNN)之间的相似性,即前者可以通过使用固定卷积滤波器来完成,我们提出了一种新颖的端到端可学习LBP网络用于面部欺骗检测。我们的网络可以通过将可学习的卷积层与固定参数LBP层相结合来显着减少网络参数,固定参数LBP层由稀疏二进制滤波器和可派生的模拟门函数组成。与现有的基于深度学习的检测方法相比,我们全连接层中的参数最多可节省64倍。我们在两个标准的欺骗数据库(Relay-Attack和CASIA-FA)上进行了广泛的实验,我们提出的LBP网络大大优于最新的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号