首页> 外文期刊>Journal of visual communication & image representation >Optimal feature selection-based biometric key management for identity management system: Emotion oriented facial biometric system
【24h】

Optimal feature selection-based biometric key management for identity management system: Emotion oriented facial biometric system

机译:基于最佳特征选择的身份管理系统的生物识别密钥管理:情绪导向面部生物识别系统

获取原文
获取原文并翻译 | 示例

摘要

Identity management systems with biometric key binding make digital transactions secure and reliable. A novel methodology is proposed to develop an intelligent key management system using facial emotions. Key binding with facial emotions makes use of an intrinsic user specific trait facilitating a more natural computer to human interaction. The proposed system utilizes metaheuristic swarm intelligence based optimization techniques to extract optimal features. The work demonstrates key binding by encrypting an image with a secret key bound to optimal features extracted from facial emotions. Efficiency and correctness of proposed key management is validated by successful decryption at receiving end with any one of the enrolled emotions given as input. Deer Hunting Optimization Algorithm and Chicken Swarm Optimization are merged to select optimal features from facial emotions. The derived algorithm is called Fitness Sorted Deer Hunting Optimization Algorithm with Rooster Update. Seven facial emotions - anger, disgust, fear, happiness, sadness, surprise and neutral are used to extract optimal features from Japanese Female Facial Expressions and Yale Facial datasets to train the neural network. Proposed work achieved better performance results over state-of-art optimization algorithms such as whale optimization algorithm, grey wolf optimization, chicken swarm optimization and deer hunting optimization algorithm. Accuracy of proposed model is 2.2% better than deer hunting optimization algorithm and 12.3% better than chicken swarm optimization for a key length 80.
机译:具有生物识别密钥绑定的身份管理系统使数字交易安全可靠。建议使用面部情绪开发智能密钥管理系统的新方法。与面部情绪的关键结合利用内在的用户特定特征,促进了更自然的计算机对人类互动。所提出的系统利用基于血型群体智能的优化技术来提取最佳特征。该工作通过加密图像来演示密钥绑定,其中包含绑定到从面部情绪中提取的最佳特征的秘密密钥。通过成功解密在接收到结束时,验证了拟议的关键管理的效率和正确性,并以任何作为输入给出的注册情绪。鹿狩猎优化算法和鸡群优化是合并的,以选择面部情绪的最佳特征。派生算法称为健身分类鹿打猎优化算法,具有公鸡更新。七种面部情感 - 愤怒,厌恶,恐惧,幸福,悲伤,惊喜和中立者用于从日本女性面部表情和耶鲁面部数据集中提取最佳特征,以培训神经网络。拟议的工作取得了更好的性能结果,最先进的优化算法,如鲸鱼优化算法,灰狼优化,鸡群优化和鹿狩猎优化算法等最先进的优化算法。提出模型的准确性比鹿狩猎优化算法优于2.2%,比钥匙长度80的鸡舍优化优于12.3%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号