首页> 外文期刊>Journal of visual communication & image representation >SAR-NAS: Skeleton-based action recognition via neural architecture searching
【24h】

SAR-NAS: Skeleton-based action recognition via neural architecture searching

机译:SAR-NAS:通过神经架构搜索的基于骨架的动作识别

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a study of automatic design of neural network architectures for skeleton-based action recognition. Specifically, we encode a skeleton-based action instance into a tensor and carefully define a set of operations to build two types of network cells: normal cells and reduction cells. The recently developed DARTS (Differentiable Architecture Search) is adopted to search for an effective network architecture that is built upon the two types of cells. All operations are 2D based in order to reduce the overall computation and search space. Experiments on the challenging NTU RGB+D and Kinectics datasets have verified that most of the networks developed to date for skeleton-based action recognition are likely not compact and efficient. The proposed method provides an approach to search for such a compact network that is able to achieve comparative or even better performance than the state-of-the-art methods.
机译:本文介绍了基于骨架动作识别的神经网络架构自动设计的研究。具体地,我们将基于骨架的动作实例编码为张量并仔细地定义一组操作以构建两种类型的网络单元:正常单元和还原单元。采用最近开发的飞镖(可差异的架构搜索)来搜索基于两种类型的单元格构建的有效网络架构。所有操作都是基于2D的,以减少整体计算和搜索空间。关于挑战NTU RGB + D和Kinectics数据集的实验已经验证了迄今为止基于骨架动作识别的大多数网络可能不具紧凑且有效。该方法提供了一种方法来搜索能够实现比最先进的方法实现比较或甚至更好的性能的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号