首页> 外文期刊>Journal of visual communication & image representation >Three stage deep network for 3D human pose reconstruction by exploiting spatial and temporal data via its 2D pose
【24h】

Three stage deep network for 3D human pose reconstruction by exploiting spatial and temporal data via its 2D pose

机译:通过其2D姿势利用空间和时间数据进行三维人类姿势重建的三阶段深网络

获取原文
获取原文并翻译 | 示例

摘要

3D Human Pose Reconstruction (HPR) is a challenging task due to less availability of 3D ground truth data and projection ambiguity. To address these limitations, we propose a three-stage deep network having the workflow of 2D Human Pose Estimation (HPE) followed by 3D HPR; which utilizes the proposed Frame Specific Pose Estimation (FSPE), Multi-Stage Cascaded Feature Connection (MSCFC) and Feature Residual Connection (FRC) Sub-level Strategies. In the first stage, the FSPE concept with the MSCFC strategy has been used for 2D HPE. In the second stage, the basic deep learning concepts like convolution, batch normalization, ReLU, and dropout have been utilized with the FRC Strategy for spatial 3D reconstruction. In the last stage, LSTM deep architecture has been used for temporal refinement. The effectiveness of the technique has been demonstrated on MPII, Human3.6M, and HumanEva-I datasets. From the experiments, it has been observed that the proposed method gives competitive results to the recent state-of-the-art techniques.
机译:3D人类姿势重建(HPR)是一个具有挑战性的任务,因为3D地面真理数据和投影歧义的可用性较少。为了解决这些限制,我们提出了一个三级深网络,具有2D人类姿势估计(HPE)的工作流程,然后是3D HPR;它利用所提出的帧特定姿势估计(FSPE),多级级联功能连接(MSCFC)和具有剩余连接(FRC)子级策略的功能。在第一阶段,具有MSCFC策略的FSPE概念已用于2D HPE。在第二阶段,已经使用了卷积,批量标准化,relu和辍学等基本深度学习概念,用于空间3D重建的FRC策略。在最后阶段,LSTM深度架构已被用于时间细化。该技术的有效性已在MPII,Human3.6M和Humaneva-I数据集上证明。从实验开始,已经观察到该方法对最近的最先进技术提供了竞争力的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号