首页> 外文期刊>Journal of visual communication & image representation >Deep hierarchical encoding model for sentence semantic matching
【24h】

Deep hierarchical encoding model for sentence semantic matching

机译:句子语义匹配的深层次编码模型

获取原文
获取原文并翻译 | 示例

摘要

Sentence semantic matching (SSM) always plays a critical role in natural language processing. Measuring the intrinsic semantic similarity among sentences is very challenging and has not been substantially addressed. The latest SSM research usually relies on a shallow text representation and interaction between sentence pairs, which might not be enough to capture the complex semantic features and lead to limited performance. To capture more semantic context features and interactions, we propose a hierarchical encoding model (HEM) for sentence representation, further enhanced by a hierarchical matching mechanism for sentence interaction. Given two sentences, HEM generates intermediate and final representations in encoding layer, which are further handled by a novel hierarchical matching mechanism to capture more multi-view interactions in matching layer. The comprehensive experiments demonstrate that our model is capable to capture more sentence semantic features and interactions, which significantly outperforms the existing state-of-the-art neural models on the public real-world dataset. (c) 2020 Elsevier Inc. All rights reserved.
机译:句子语义匹配(SSM)始终在自然语言处理中发挥着关键作用。测量句子中的内在语义相似性非常具有挑战性,并且没有得到大幅解决。最新的SSM研究通常依赖于浅文本表示和句子对之间的交互,这可能不足以捕获复杂的语义功能并导致性能有限。要捕获更多语义上下文特征和交互,我们提出了一个句子表示的分层编码模型(HEM),通过用于句子交互的分层匹配机制进一步增强。考虑到两个句子,下摆在编码层中生成中间和最终表示,其通过新的分层匹配机制进一步处理,以捕获匹配层中的更多多视图交互。综合实验表明,我们的模型能够捕获更多的句子语义特征和相互作用,这显着优于公共现实世界数据集现有的最先进的神经模型。 (c)2020 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号