首页> 外文期刊>Journal of visual communication & image representation >Research on automatic target detection and recognition based on deep learning learning
【24h】

Research on automatic target detection and recognition based on deep learning learning

机译:基于深度学习学习的自动目标检测与识别研究

获取原文
获取原文并翻译 | 示例

摘要

With the development of computer technology, the related achievements of image processing have been applied. Among them, the results of automatic target detection and recognition are widely used in the fields of reconnaissance, early warning and traffic control with the application of UAV. But now, the research of automatic target detection and tracking is becoming smaller and smaller. The original automatic target detection and recognition algorithm seems to be inadequate. The bottleneck of low-level feature design and optimization makes the accuracy and efficiency of automatic target detection inefficient. Therefore, based on in-depth learning, this paper establishes a method to automatically learn effective image features from images to achieve automatic target detection. Through the simulation of target detection in VEDAI database. The results show that the recognition rate of the proposed model is more than 95%. The results show that the proposed method can realize the automatic detection and recognition of targets very well. (C) 2019 Published by Elsevier Inc.
机译:随着计算机技术的发展,已经应用了图像处理的相关成就。其中,自动目标检测和识别的结果广泛用于侦察,预警和交通控制领域与UAV的应用。但现在,自动目标检测和跟踪的研究变得越来越小。原始的自动目标检测和识别算法似乎不足。低级特征设计和优化的瓶颈使得自动目标检测的准确性和效率低下。因此,基于深入学习,本文建立了一种自动学习从图像的有效图像特征来实现自动目标检测的方法。通过vedai数据库中的目标检测模拟。结果表明,拟议模型的识别率超过95%。结果表明,该方法可以非常良好地实现对目标的自动检测和识别。 (c)2019年由elsevier公司发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号