首页> 外文期刊>International journal of computational vision and robotics >Maximum entropy-based semi-supervised learning for automatic detection and recognition of objects using deep ConvNets
【24h】

Maximum entropy-based semi-supervised learning for automatic detection and recognition of objects using deep ConvNets

机译:基于最大熵的半导体学习,用于自动检测和识别对象使用深扫描符

获取原文
获取原文并翻译 | 示例

摘要

Object detection and localisation is one of the major research areas in computer vision that is growing very rapidly. Currently, there is a plethora of pre-trained models for object detection including YOLO, mask RCNN, RCNN, fast RCNN, multi-box, etc. In this paper, we proposed a new framework for object detection called 'maximum entropy-based semi-supervised learning for automatic detection and recognition of objects'. The main objective of this paper is to recognise objects from a number of visual object classes in a realistic scene simultaneously. The major operations of our proposed approach are preprocessing, localisation, segmentation and object detection. In the preprocessing, three processes, noise reduction, intensity normalisation, and morphology are considered. Then localisation and object segmentation is performed using maximum entropy in which optimal threshold is detected and in the end, object detection is performed using deep ConvNet. The performance of the proposed framework is evaluated using MATLAB-R2018b and it is compared with some previous state of the art techniques in terms of localisation error, detection and segmentation accuracy along with computation time.
机译:对象检测和本地化是计算机视觉中的主要研究领域之一,这些区域在非常迅速发展。目前,有一种预先训练的对象检测模型,包括YOLO,MASK RCNN,RCNN,FAST RCNN,多盒等。在本文中,我们提出了一个名为“基于熵的半的物体检测的新框架”用于自动检测和识别物体的学习。本文的主要目的是同时识别来自现实场景中的许多可视目标类的对象。我们所提出的方法的主要业务是预处理,本地化,分割和对象检测。在预处理中,考虑三个过程,降噪,强度标准化和形态。然后使用最大熵执行本地化和对象分割,其中检测到最佳阈值并在最后,使用深句法进行对象检测。使用MATLAB-R2018B评估所提出的框架的性能,并且在本地化误差,检测和分割精度以及计算时间方面,它与先前现有技术的某些状态进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号