首页> 外文期刊>Journal of visual communication & image representation >A multiscale dilated dense convolutional network for saliency prediction with instance-level attention competition
【24h】

A multiscale dilated dense convolutional network for saliency prediction with instance-level attention competition

机译:具有实例级注意竞争的显着性预测的多尺度扩张密集卷积网络

获取原文
获取原文并翻译 | 示例

摘要

Data-driven saliency estimation attracts increasing interests in recent years because of the establishment of large-scale annotated datasets and the evolution of deep convolutional neural networks (CNN). Although CNN-based models perform much better than traditional ones in saliency prediction, there is still a gap between computational models and human behavior. One reason is that existing approaches fail assigning correct saliency to different objects in scenes with multiple objects. In this paper, we propose a multiscale dilated dense convolutional network to handle instance-level attention competition for better saliency prediction. In the proposed architecture, dense connections encode inter- and intra-class features for instance-level attention competition, dilated convolution collects contextual information to enrich feature representations of instances, and shortcut connections provide multiscale features for attention competition across scales. According to evaluations on three challenging datasets, CAT2000, SALICON, and MIT1003, the proposed model achieves the state-of-the-art performance. (C) 2019 Elsevier Inc. All rights reserved.
机译:由于建立了大规模带注释的数据集以及深度卷积神经网络(CNN)的发展,数据驱动的显着性估计近年来引起了越来越多的兴趣。尽管基于CNN的模型在显着性预测方面的性能要好于传统模型,但计算模型与人类行为之间仍然存在差距。原因之一是现有方法无法为具有多个对象的场景中的不同对象分配正确的显着性。在本文中,我们提出了一种多尺度扩张的密集卷积网络来处理实例级别的注意力竞争,以更好地进行显着性预测。在提出的体系结构中,密集连接对类间和类内特征进行编码,以进行实例级别的注意力竞争,散布的卷积收集上下文信息以丰富实例的特征表示,而快捷连接为跨尺度的注意力竞争提供多尺度特征。根据对三个具有挑战性的数据集CAT2000,SALICON和MIT1003的评估,所提出的模型实现了最先进的性能。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号