首页> 外文期刊>Journal of visual communication & image representation >Road surface condition classification using deep learning
【24h】

Road surface condition classification using deep learning

机译:使用深度学习对路面状况进行分类

获取原文
获取原文并翻译 | 示例

摘要

Traditional image recognition technology currently cannot achieve the fast real-time high-accuracy performance necessary for road recognition in intelligent driving. Deep learning models have been recently emerging as promising tools to achieve this performance. The recognition performance of such models can be boosted using appropriate selection of the activation functions. This paper proposes a deep learning approach for the classification of road surface conditions, and constructs a new activation function based on the rectified linear unit Rectified Linear Units (ReLu) activation function. The experimental results show a classification accuracy of 94.89% on the road state database. Experiments on public data-sets demonstrate that the proposed convolutional neural network model with the improved activation function has better generalization and excellent classification performance. (C) 2019 Elsevier Inc. All rights reserved.
机译:当前,传统的图像识别技术无法实现智能驾驶中道路识别所需的快速实时高精度性能。深度学习模型最近已成为实现此性能的有前途的工具。可以通过适当选择激活函数来提高此类模型的识别性能。本文提出了一种用于路面状况分类的深度学习方法,并基于整流线性单元Rectified Linear Units(ReLu)激活函数构造了一个新的激活函数。实验结果表明,在路况数据库上的分类精度为94.89%。在公共数据集上的实验表明,所提出的具有改进的激活函数的卷积神经网络模型具有更好的泛化能力和出色的分类性能。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号