首页> 外文期刊>Journal of visual communication & image representation >Locally optimum image watermark decoder by modeling NSCT domain difference coefficients with vector based Cauchy distribution
【24h】

Locally optimum image watermark decoder by modeling NSCT domain difference coefficients with vector based Cauchy distribution

机译:通过基于向量的柯西分布对NSCT域差系数建模来实现局部最优图像水印解码器

获取原文
获取原文并翻译 | 示例

摘要

Improving the ability of imperceptibility, watermark capacity, and robustness at the same time still remains a challenge within the digital image watermarking community. By modeling the robust nonsub-sampled Contourlet transform (NSCT) difference coefficients with vector based Cauchy distribution and employing locally most powerful (LMP) test, we propose a locally optimum image watermark decoder in NSCT domain. We first compute the difference coefficients according to the inter-scale dependency between NSCT coefficients, and investigate the robustness of the NSCT difference coefficients by subjective visual error and objective mean squared error (MSE) terms. We then embed the digital watermark into the significant NSCT difference subband with highest energy by modifying the robust NSCT difference coefficients. At the receiver, by combining the vector based Cauchy probability distribution and LMP test, we propose a locally optimum blind watermark decoder in the NSCT domain. Here, robust NSCT difference coefficients are firstly modeled by employing the vector based Cauchy probability density function (PDF), where the Cauchy marginal statistics and various strong dependencies of NSCT coefficients are incorporated. Then the statistical model parameters of vector based Cauchy PDF are estimated using second-kind statistics approach. And finally a blind image watermark decoder is developed using vector based Cauchy PDF and LMP decision rule. We conduct extensive experiments to evaluate the performance of the proposed blind watermark decoder, in which encouraging results validate the effectiveness of the proposed technique, in comparison with the state-of-the-art approaches recently proposed in the literature. (C) 2019 Elsevier Inc. All rights reserved.
机译:在数字图像水印界,同时提高感知能力,水印容量和鲁棒性仍然是一个挑战。通过使用基于矢量的柯西分布对鲁棒的非下采样Contourlet变换(NSCT)差分系数进行建模,并采用局部最强大(LMP)测试,我们在NSCT域中提出了一种局部最优的图像水印解码器。我们首先根据NSCT系数之间的尺度间相关性来计算差异系数,然后通过主观视觉误差和客观均方误差(MSE)项研究NSCT差异系数的鲁棒性。然后,通过修改鲁棒的NSCT差系数,将数字水印嵌入到能量最高的重要NSCT差子带中。在接收机处,通过结合基于矢量的柯西概率分布和LMP测试,我们在NSCT域中提出了一种局部最优的盲水印解码器。在此,首先通过使用基于向量的柯西概率密度函数(PDF)对鲁棒的NSCT差系数建模,其中结合了柯西边际统计数据和各种NSCT系数的强相关性。然后使用第二种统计方法估计基于矢量的柯西PDF的统计模型参数。最后,利用基于向量的柯西PDF和LMP决策规则,开发了一种盲图像水印解码器。我们进行了广泛的实验,以评估所提出的盲水印解码器的性能,与最近文献中提出的最新方法相比,令人鼓舞的结果证实了所提出技术的有效性。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号