首页> 外文期刊>Journal of visual communication & image representation >Multi-script text versus non-text classification of regions in scene images
【24h】

Multi-script text versus non-text classification of regions in scene images

机译:场景图像中区域的多脚本文本与非文本分类

获取原文
获取原文并翻译 | 示例

摘要

Text versus non-text region classification is an essential but difficult step in scene-image analysis due to the considerable shape complexity of text and background patterns. There exists a high probability of confusion between background elements and letter parts. This paper proposes a feature-based classification of image blocks using the color autocorrelation histogram (CAH) and the scale-invariant feature transform (SIFT) algorithm, yielding a combined scale and color-invariant feature suitable for scene-text classification. For the evaluation, features were extracted from different color spaces, applying color-histogram autocorrelation. The color features are adjoined with a SIFT descriptor. Parameter tuning is performed and evaluated. For the classification, a standard nearest-neighbor (INN) and a support vector machine (SVM) were compared. The proposed method appears to perform robustly and is especially suitable for Asian scripts such as Kannada and Thai, where urban scene-text fonts are characterized by a high curvature and salient color variations. (C) 2019 Published by Elsevier Inc.
机译:文本与非文本区域分类是场景图像分析中必不可少但困难的步骤,因为文本和背景图案的形状复杂性很高。背景元素和字母部分之间很容易混淆。本文提出了一种使用颜色自相关直方图(CAH)和比例尺不变特征变换(SIFT)算法对图像块进行基于特征的分类的方法,从而产生了适合场景文本分类的比例尺和颜色不变特征的组合。为了进行评估,使用颜色直方图自相关从不同颜色空间中提取特征。颜色特征与SIFT描述符相邻。执行并评估参数。对于分类,比较了标准最近邻(INN)和支持向量机(SVM)。所提出的方法表现出强大的性能,并且特别适用于诸如Kannada和Thai这样的亚洲文字,其中城市场景文本字体的特征是曲率和显着颜色变化很大。 (C)2019由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号