首页> 外文期刊>Journal of visual communication & image representation >IL-GAN: Illumination-invariant representation learning for single sample face recognition
【24h】

IL-GAN: Illumination-invariant representation learning for single sample face recognition

机译:IL-GAN:照度不变表示学习,用于单样本人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Single sample per person face recognition influenced by varying illumination is a tricky issue. Conventional techniques for illumination-invariant face recognition either realize illumination normalization on the whole face, or learn the illumination-invariant representation from the face image. This paper holds the opinion that deep learning method, which is more similar to the behavior of primate brain, can leverage the advantages of both the conventional techniques. Motivated by the success of generative adversarial network in image representation, this paper proposes IL-GAN model based on the basic structures of variational auto-encoder and generative adversarial network, generating the Controlled Illumination-level Face Image while preserves identity character as well performing a powerful latent representation from the face image, which encodes illumination-invariant signatures. Moreover, this model can be adopted in single sample per person face recognition. Meanwhile, this research proposes an novel illumination level estimation method based on singular value decomposition to generate the Controlled Illumination-level Face Image optionally. Finally, the performances of the proposed method and other state-of-the-art techniques are verified on the Extended Yale B, CMU PIE, IJB-A and our Self-built Driver Face databases. The experimental results indicate that the IL-GAN model outperforms previous approaches for single sample per person face recognition under varying illumination. (C) 2019 Elsevier Inc. All rights reserved.
机译:受光照变化影响的每人面部识别单个样本是一个棘手的问题。用于照度不变的面部识别的常规技术或者实现整个面部的照度归一化,或者从面部图像中学习照度不变的表示。本文认为,深度学习方法与灵长类动物的大脑行为更为相似,可以利用这两种传统技术的优势。受生成对抗网络在图像表示中成功的推动,本文提出了基于变分自动编码器和生成对抗网络基本结构的IL-GAN模型,生成可控照明级人脸图像,同时保留身份特征并执行面部图像的强大潜在表示,可对照明不变的特征进行编码。而且,该模型可以在每个人脸识别的单个样本中采用。同时,本研究提出了一种新的基于奇异值分解的照明度估计方法,以可选地生成受控照明度面部图像。最后,在扩展Yale B,CMU PIE,IJB-A和我们的自建驾驶员面部数据库上验证了所提出方法和其他最新技术的性能。实验结果表明,IL-GAN模型在变化的光照条件下优于人脸识别单个样本的先前方法。 (C)2019 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号