首页> 外文期刊>Journal of visual communication & image representation >Deep feature representation for anti-fraud system
【24h】

Deep feature representation for anti-fraud system

机译:反欺诈系统的深度特征表示

获取原文
获取原文并翻译 | 示例

摘要

Online payment is becoming popular due to the development of e-commerce. So payment safety is more important. Since there is a fraudulent situation, an anti-fraud system is indispensable. GMM was lever-aged in many anti-fraud applications, but it only takes positive sample into account. Convolutional neural network is a strong strategy for learning deep representation of samples. So in this paper, we propose a CNNs architecture to deal with this problem. And the distance metric method can effectively identify whether candidates are the same person. Experimental results show the effectiveness of our method. (C) 2019 Published by Elsevier Inc.
机译:由于电子商务的发展,在线支付正​​变得越来越流行。因此,付款安全性更为重要。由于存在欺诈情况,因此反欺诈系统必不可少。 GMM在许多反欺诈应用中处于杠杆作用,但仅考虑了积极的样本。卷积神经网络是学习样本深层表示的强大策略。因此,在本文中,我们提出了一种CNN架构来解决此问题。距离度量方法可以有效地识别出候选人是否是同一个人。实验结果表明了该方法的有效性。 (C)2019由Elsevier Inc.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号