首页> 外文期刊>Journal of visual communication & image representation >Image up-sampling using deep cascaded neural networks in dual domains for images down-sampled in DCT domain
【24h】

Image up-sampling using deep cascaded neural networks in dual domains for images down-sampled in DCT domain

机译:在双域中使用深度级联神经网络对DCT域中进行降采样的图像进行向上采样

获取原文
获取原文并翻译 | 示例

摘要

Recent researches show that the high-frequency discrete cosine transform (DCT) coefficients can be estimated from low-frequency DCT coefficients by exploiting the spatial correlations. Hence, images coded by DCT such as JPEG/MJPEG/H.264, etc., can be down-sampled in DCT domain, where the high frequency information can be accurately restored through image up-sampling. In this letter, we propose a novel deep neural network using the cascaded fully connected layers and convolution layers in dual domains (DCT) and spatial domains), in order to restore high-frequency DCT coefficients from observed low-frequency DCT coefficients by exploiting the DCT inter-block and spatial correlations. In the proposed network, many recent techniques are adopted, including residual network in dual domains, batch normalization, denseNet, etc. Experimental results show that the proposed cascaded networks in dual domains significantly outperforms the state-of-the-art DCT up-sampling methods in terms of PSNR (0.63-2.57 dB gain), SSIM values, and subjective evaluations on standard image datasets Set5 and Set14. (C) 2018 Elsevier Inc. All rights reserved.
机译:最近的研究表明,通过利用空间相关性,可以从低频DCT系数估计高频离散余弦变换(DCT)系数。因此,可以在DCT域中对DCT编码的图像(例如JPEG / MJPEG / H.264等)进行下采样,从而可以通过图像上采样来准确地恢复高频信息。在这封信中,我们提出了一种新颖的深度神经网络,它使用了在双域(DCT)和空间域中级联的完全连接层和卷积层),以通过利用观测到的低频DCT系数恢复高频DCT系数。 DCT块间和空间相关性。在拟议的网络中,采用了许多最新技术,包括双域中的残留网络,批处理归一化,densityNet等。实验结果表明,双域中的级联网络明显优于最新的DCT上采样PSNR(增益为0.63-2.57 dB),SSIM值以及对标准图像数据集Set5和Set14的主观评估方面的方法。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号