首页> 外文期刊>Journal of visual communication & image representation >Reduced-reference quality assessment of multiply-distorted images based on structural and uncertainty information degradation
【24h】

Reduced-reference quality assessment of multiply-distorted images based on structural and uncertainty information degradation

机译:基于结构和不确定性信息退化的多重畸变图像的降参考质量评估

获取原文
获取原文并翻译 | 示例

摘要

The majority of existing objective Image Quality Assessment (IQA) methods are designed for evaluation of images corrupted by single distortion types. However, images may be degraded with multiple distortions during processing stages. In this paper, we propose a reduced-reference IQA algorithm to predict the quality of multiply-distorted images. An image is first decomposed into predicted and disorderly portions based on the internal generative mechanism theory. The structural information is captured from the predicted image by using a shearlet representation and Renyi directional entropy is deployed to measure the disorderly information changes. Finally, we introduce the application of a framework namely Learning Using Privileged Information (LUPI) to build a quality model and obtain quality scores. During training, the LUPI framework utilizes a set of additional privileged data to learn an improved quality model. Experimental results on multiply-distorted image datasets (MLIVE and MDID2015) confirm the effectiveness of the proposed IQA model. (C) 2018 Elsevier Inc. All rights reserved.
机译:现有的大多数客观图像质量评估(IQA)方法都是为评估受单一失真类型破坏的图像而设计的。但是,在处理阶段,图像可能会因多重失真而退化。在本文中,我们提出了一种减少参考的IQA算法来预测多重失真图像的质量。首先根据内部生成机制理论将图像分解为预测部分和无序部分。通过使用小波表示法从预测图像中捕获结构信息,并利用Renyi方向熵来测量无序信息的变化。最后,我们介绍了框架的应用,即使用特权信息学习(LUPI),以建立质量模型并获得质量得分。在培训期间,LUPI框架利用一组附加的特权数据来学习改进的质量模型。多重失真图像数据集(MLIVE和MDID2015)的实验结果证实了所提出的IQA模型的有效性。 (C)2018 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号