首页> 外文期刊>Neurocomputing >Referenceless quality metric of multiply-distorted images based on structural degradation
【24h】

Referenceless quality metric of multiply-distorted images based on structural degradation

机译:基于结构退化的多重失真图像无参考质量度量

获取原文
获取原文并翻译 | 示例

摘要

Multiply-distorted images, that is, distorted by different types of distortions simultaneously, are so common in real applications. This kind of images contain multiple overlaying stages (e.g., acquisition, compression and transmission stage). Each stage will introduce a certain type of distortion, for example, sensor noise in acquisition stage and compression artifacts in compression stage. However, most current blindo-reference image quality assessment (NR-IQA) methods are specifically designed for singly-distorted images, thus resulting in their deficiency in handling multiply-distorted images. Motivated by the hypothesis that human visual system (HVS) is adapted to the structural information in images, we attempt to assess multiply-distorted images based on structural degradation. To this end, we use both first-and high-order image structures to design a novel referenceless quality metric for multiply-distorted images. Specifically, we leverage the quality-aware features extracted from both the gradient-magnitude map and contrast-normalized map, and further improve the performance by making use of redundancy of features with random subspace method. Experimental results on popular multiply-distorted image databases verify the outstanding performance of the proposed method. (c) 2018 Elsevier B.V. All rights reserved.
机译:倍数失真的图像,即同时由于不同类型的失真而失真的图像,在实际应用中非常普遍。这种图像包含多个重叠阶段(例如,采集,压缩和传输阶段)。每个阶段都会引入某种类型的失真,例如,采集阶段的传感器噪声和压缩阶段的压缩伪像。然而,大多数当前的盲/无参考图像质量评估(NR-IQA)方法是专门为单失真图像设计的,因此导致它们在处理多失真图像方面的不足。受人类视觉系统(HVS)适应图像中的结构信息这一假设的启发,我们尝试基于结构退化评估倍数失真的图像。为此,我们同时使用一阶和高阶图像结构来设计新颖的无参考质量度量标准,以用于倍数失真的图像。具体来说,我们利用从梯度-幅值图和对比度归一化图提取的质量感知特征,并通过利用随机子空间方法利用特征冗余来进一步提高性能。在流行的多失真图像数据库上的实验结果证明了该方法的出色性能。 (c)2018 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Neurocomputing》 |2018年第may17期|185-195|共11页
  • 作者单位

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China;

    Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;

    Rice Univ, Elect & Comp Engn Dept, Houston, TX 77005 USA;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China;

    Tsinghua Univ, Grad Sch Shenzhen, Shenzhen 518055, Guangdong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Image quality assessment; No-reference; Local binary pattern; Multiple distortions; Structural degradation;

    机译:图像质量评估;无参考;局部二值模式;多重失真;结构退化;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号