...
首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures >Void-free low-temperature silicon direct-bonding technique using plasma activation
【24h】

Void-free low-temperature silicon direct-bonding technique using plasma activation

机译:利用等离子体活化的无空隙低温硅直接键合技术

获取原文
获取原文并翻译 | 示例

摘要

A low-temperature silicon direct-bonding technique has been researched using variant plasma (N_2, O_2, Ar, and H/He) pretreatment prior to bonding for surface activation. In plasma bonding, after annealing at 300℃ for an hour the authors get a bonding energy of about 2-2.5 J/m~2, which is near the fracture strength of bulk silicon. In Si-Si wafer bonding, our experiments demonstrate that the origin of voids appearing in low-temperature annealing is related to the plasma variety and activation conditions. The authors believe that the annealing voids and bubbles, which appear and accumulate at the microdefects, are caused by plasma activation. They used an optimized O_2 and H/He plasma-activation process for wafer direct bonding and obtained a high surface energy, void-free hydrophilic Si-Si wafer bonding. The wafers' root-mean-square surface roughness after plasma activation was measured by an atomic force microscope. The cross-sectional image of the bonding interface was observed by a scanning electron microscope. Compared with the standard wet-chemical surface treatment that requires high-temperature annealing (> 1000℃), both the low-temperature and shorter time annealing using plasma pretreatment are suitable for the microelectromechanical systems manufacture process and wafer-scale packaging.
机译:已经研究了在键合表面活化之前使用变体等离子体(N_2,O_2,Ar和H / He)进行预处理的低温硅直接键合技术。在等离子键合中,作者在300℃下退火一小时后,获得的键合能约为2-2.5 J / m〜2,接近于块状硅的断裂强度。在Si-Si晶片键合中,我们的实验表明,在低温退火中出现的空洞的起源与等离子体的种类和激活条件有关。作者认为,退火缺陷和气泡在微缺陷处出现并累积,是由等离子体激活引起的。他们使用优化的O_2和H / He等离子体活化工艺进行晶片直接键合,并获得了高表面能,无空隙的亲水性Si-Si晶片键合。通过原子力显微镜测量等离子体活化后晶片的均方根表面粗糙度。通过扫描电子显微镜观察键合界面的截面图像。与需要高温退火(> 1000℃)的标准湿化学表面处理相比,采用等离子体预处理的低温退火和较短时间的退火都适用于微机电系统的制造过程和晶圆级封装。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号