...
首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures >Effects Of Film Reoxidation On The Growth And Material Propertiesof Ultrathin Dielectrics Grown By Rapid Thermal Nitridation In Ammonia
【24h】

Effects Of Film Reoxidation On The Growth And Material Propertiesof Ultrathin Dielectrics Grown By Rapid Thermal Nitridation In Ammonia

机译:膜再氧化对氨快速热氮化生长超薄电介质生长和材料性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Ultrathin silicpn oxynitrides have been used successfully as gate dielectrics for advanced complementary metal-oxide semiconductor technologies. Here, the authors compare the growth and material properties of oxynitrides grown by rapid thermal nitridation of silicon in ammonia (RT-NH_3) followed by reoxidation in NO, O_2, or N_2O. While the nitrogen concentration of the film is primarily determined by the RT-NH_3 condition, reoxidation causes a slight change in nitrogen content! and increase in film thickness which varies depending on the initial nitrogen concentration in the film and the oxidizing conditions used. The nitrogen/oxygen concentration ratio was determined to be sensitive to the reoxidizing species, process pressure, and exposure time. Compositional analysis by medium energy ion scattering indicates similarities in microstructure but differences in nitrogen and oxygen profiles among the different films. Results indicate that reoxidation in NO, O_2, or N_2O can result in different nitrogen concentrations at the bottom interface under the same process conditions. Thus, the choice of reoxidizing species may be an important decision for a gate dielectric process since the amount and placement of nitrogen needs to be optimized to reduce the impact on device peak mobility and threshold voltage, while still be sufficient to improve hot carrier reliability, reduce defect generation rates and gate leakage current, and suppress boron penetration from the gate electrode [D. A. Buchanan, IBM J. Res. Dev. 43, 245 (1999); M. L. Green et al, J. Appl. Phys. 90, 205 (2001); E. Gusev et ai, IBM J. Res. Dev. 43, 265 (1999)].
机译:超薄硅氧氮化物已成功用作先进的互补金属氧化物半导体技术的栅极电介质。在这里,作者比较了通过在氨气中快速热氮化硅(RT-NH_3),然后在NO,O_2或N_2O中进行再氧化而生长的氮氧化物的生长和材料性能。尽管薄膜的氮浓度主要由RT-NH_3条件决定,但再氧化会导致氮含量略有变化!膜厚的增加取决于膜中的初始氮浓度和所使用的氧化条件。确定氮/氧浓度比对再氧化物质,工艺压力和暴露时间敏感。通过中等能量离子散射进行的成分分析表明,在不同薄膜之间,微观结构相似,但氮和氧分布不同。结果表明,在相同工艺条件下,NO,O_2或N_2O中的再氧化会导致底部界面处的氮浓度不同。因此,由于需要优化氮的含量和位置以减少对器件峰值迁移率和阈值电压的影响,同时仍然足以提高热载流子的可靠性,因此选择重氧化物种可能是栅极介电工艺的重要决定,降低缺陷产生率和栅极泄漏电流,并抑制硼从栅电极的渗透[D. A. Buchanan,IBM J. Res。开发人员43,245(1999); M.L.Green等人,J.Appl.Chem。物理90,205(2001); E.Gusev等,IBM J. Res。开发人员43,265(1999)]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号