首页> 外文期刊>Journal of Vacuum Science & Technology >A-plane GaN hydride vapor phase epitaxy on a-plane GaN templates with and without use of TiN intermediate layers
【24h】

A-plane GaN hydride vapor phase epitaxy on a-plane GaN templates with and without use of TiN intermediate layers

机译:使用和不使用TiN中间层的a面GaN模板上的a面GaN氢化物气相外延

获取原文
获取原文并翻译 | 示例
           

摘要

Thick a-plane GaN films were grown by hydride vapor phase epitaxy on a-plane GaN templates prepared by metalorganic chemical vapor deposition (MOCVD) and also on a-plane MOCVD templates using in situ nitridized Ti underlayers. The growth on a-GaN showed improved crystalline quality with increasing hydride vapor phase epitaxy thickness, while MOCVD template quality had little effect. With 30 nm Ti films deposited on the templates and converted to TiN islands by nitridation during growth, the authors obtained thick (350 μm), freestanding a-GaN films detached from the template. Microcathodoluminescence spectra of the growth surface showed intense band edge luminescence at 3.47 eV at 90 K with no defect bands. Spectra taken from the surface turned to the substrate were dominated by stacking fault-related bands at 3.42, 3.3, and 3.0 eV, similar to the spectra of the a-GaN templates. X-ray measurements showed the freestanding a-GaN layers consisted of misoriented large grains of a-GaN with halfwidth for individual grains close to 300-400 arc sec and halfwidth anisotropy with respect to sample rotation around the [11-20] direction.
机译:通过氢化物气相外延在通过有机金属化学气相沉积(MOCVD)制备的a平面GaN模板上以及在使用原位氮化Ti底层的a平面MOCVD模板上通过氢化物气相外延生长厚的a面GaN膜。随着氢化物气相外延厚度的增加,在a-GaN上的生长显示出改善的晶体质量,而MOCVD模板质量几乎没有影响。通过在模板上沉积30 nm的Ti膜并在生长过程中通过氮化将其转变为TiN岛,作者获得了厚(350μm)的自立式a-GaN膜与模板分离。生长表面的微阴极发光光谱显示在90 K处在3.47 eV处有强烈的带边缘发光,没有缺陷带。从表面到衬底的表面获取的光谱主要通过堆叠3.42、3.3和3.0 eV的缺陷相关能带来控制,类似于a-GaN模板的光谱。 X射线测量显示独立的a-GaN层由方向不正确的a-GaN大晶粒组成,半晶粒宽度接近300-400弧秒,单个样品的半宽度各向异性是围绕[11-20]方向旋转的各向异性。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2010年第5期|p.1039-1043|共5页
  • 作者单位

    Giredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnGiredmet, 5-1 B. Tolmachevky St., Moscow 119017, Russia;

    rnSchool of Advanced Materials Engineering, Chonbuk National University, Jeonju City 561-756, Korea;

    rnYale University, New Haven, Connecticut 06520;

    rnYale University, New Haven, Connecticut 06520;

    rnDepartment of Materials Science Engineering, University of Florida, Gainesville 32611;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号