...
首页> 外文期刊>Journal of Vacuum Science & Technology >Growth and luminescence characterization of dilute InPN alloys grown by molecular beam epitaxy
【24h】

Growth and luminescence characterization of dilute InPN alloys grown by molecular beam epitaxy

机译:分子束外延生长稀InPN合金的生长和发光特性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The authors have investigated the growth and luminescence properties of InPN alloys grown by solid-source molecular-beam epitaxy (MBE). The N composition increases with decreasing growth rate, P_2/In flux ratio, and growth temperature. In this work, the highest N composition obtained is 0.56% for the InPN sample. The appropriate growth temperature is around 400 ℃. However, the growth-temperature window of the InPN alloys having a smooth surface is very narrow. In order to obtain photoluminescence (PL) emission from the InPN samples grown by solid-source MBE, InPN alloys must be grown under the condition of lower-plasma power since the grown-in point defects induced by N plasma are reduced. Thermal treatment is effective to improve the luminescence efficiency of InPN alloys, and the appropriate annealing temperature is around 700 ℃. However, the S-shape behavior is observed only for the annealed InPN samples by atomic rearrangements during thermal treatment, which is attributed to the weaker bond strength of In-N than that of In-P. In addition, the PL peak energy corresponding to the near-band edge emission redshifts with increasing annealing temperature. These results indicate that the luminescence properties of InPN alloys are unique in contrast to other dilute nitrides such as GaAsN and GaPN alloys.
机译:作者研究了通过固源分子束外延(MBE)生长的InPN合金的生长和发光特性。随着生长速率,P_2 / In通量比和生长温度的降低,N的组成增加。在这项工作中,InPN样品获得的最高N成分为0.56%。适宜的生长温度为400℃左右。然而,具有光滑表面的InPN合金的生长温度窗口非常窄。为了从固体源MBE生长的InPN样品中获得光致发光(PL)发射,必须减少等离子体功率,才能生长InPN合金,因为减少了N等离子体引起的生长点缺陷。热处理可有效提高InPN合金的发光效率,适当的退火温度约为700℃。但是,仅在退火过程中通过原子重排对退火的InPN样品观察到S形行为,这归因于In-N的键合强度比In-P的键合强度弱。另外,对应于近带边缘发射的PL峰值能量随着退火温度的升高而红移。这些结果表明,与其他稀氮化物(例如GaAsN和GaPN合金)相比,InPN合金的发光特性是独特的。

著录项

  • 来源
    《Journal of Vacuum Science & Technology》 |2010年第3期|P.C3B22-C3B26|共5页
  • 作者单位

    Department of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Electrical and Electronic Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka,Tempaku-cho, Toyohashi, Aichi 441-8580, Japan;

    rnDepartment of Quantum Electronic Device Engineering, Graduate School of Engineering, Osaka University,2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

    rnDepartment of Quantum Electronic Device Engineering, Graduate School of Engineering, Osaka University,2-1 Yamadaoka, Suita, Osaka 565-0871, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号