首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics Processing and Phenomena >Comparing ionized physical vapor deposition and high power magnetron copper seed deposition
【24h】

Comparing ionized physical vapor deposition and high power magnetron copper seed deposition

机译:比较离子化物理气相沉积和高功率磁控铜种子沉积

获取原文
获取原文并翻译 | 示例
           

摘要

A computational modeling comparison is made between ionized physical vapor deposition (IPVD) and high power magnetron (HPM) deposition of copper. For the comparison the point of view of the feature scale is stressed where the two reactors are distinguishable by the magnitude and ratio of specie (Cu,Cu~a,Cu~+,Ar~+) flux, the angular distribution of the specie, and the energy of the ions incident on the feature surface. The HPM is characterized for the conditions studied by a metal flux content made up almost entirely of copper athermals, an Ar~+ ion flux about four times the Cu metal flux, decreasing Cu~+ fraction and increasing Cu athermal flux to surface with increasing target power, and both no sputter and sputter regimes at the wafer possible. The IPVD reactor is characterized for the conditions studied by a Cu metal flux with a large neutral fraction but significant ions and athermals, an Ar~+ ion flux on the order of the Cu metal flux, and only a sputter regime at the wafer possible. An increase in target power increases the deposition rate and decreases the Cu~+ fraction in both systems. In IPVD the bottom coverage increases and the side wall coverage decreases due to a decrease in the sputter rate and an increase in the Cu neutral and athermal fraction. In HPM bottom coverage is reduced with increasing target power due to the lower Cu~+ fraction. An increase in wafer power decreases the deposition rate in both systems by increasing the sputter rate. A lower ion current to the wafer for IPVD versus HPM gives the ions a higher energy at the wafer for the same power. In HPM lower energy ions are sufficient for the same sputtering rate versus IPVD due to the higher ioneutral fraction. With no wafer bias HPM has thicker bottom versus IPVD since no sputtering of the feature bottom is occurring and the more focused athermals (versus neutrals) are less shadowed to the feature bottom. The IPVD side wall deposits have more thickness variation than HPM due to the large Cu neutral component in IPVD. An increase in wafer power increases side wall coverage and decreases feature bottom coverage in both systems as metal deposited at feature bottom is redeposited to the sidewalls. For increased coil power in IPVD the Cu~+ fraction increases and the Cu neutral fraction decreases. Both bottom and side wall coverage increase as more Cu enters the feature as focused ions.
机译:在电离物理气相沉积(IPVD)和铜的高功率磁控管(HPM)沉积之间进行了计算模型比较。为了进行比较,强调了特征尺度的观点,其中两个反应器通过实物(Cu,Cu〜a,Cu〜+,Ar〜+)通量的大小和比率,实物的角度分布,以及入射在特征表面上的离子的能量。 HPM的特征在于所研究的条件是:金属通量几乎完全由铜非热物组成,Ar〜+离子通量约为Cu金属通量的四倍,Cu〜+分数降低,且随着目标的增加,向表面的Cu非热通量增加功率,并且晶圆上没有溅射和溅射机制。 IPVD反应器的特征在于具有以下条件的条件:具有大中性分数但有大量离子和无热物的Cu金属助焊剂,Ar〜+离子通量约为Cu金属通量,并且仅可能在晶片上进行溅射。在两个系统中,目标功率的增加都会增加沉积速率,并降低Cu〜+含量。在IPVD中,由于溅射速率的降低以及Cu中性和无热成分的增加,底部覆盖率增加而侧壁覆盖率降低。在HPM中,由于较低的Cu〜+比例,底部覆盖率随目标功率的增加而降低。晶片功率的增加通过增加溅射速率而降低了两个系统中的沉积速率。与HPM相比,用于IPVD的晶圆的离子电流更低,因此在相同功率下离子在晶圆上的能量更高。在HPM中,由于较高的离子/中性分数,与IPVD相比,较低的能量离子足以实现相同的溅射速率。在没有晶圆偏压的情况下,HPM的底部比IPVD的底部厚,因为不会发生特征底部的溅射,而且聚焦更集中的无热物(相对于中性线)对特征底部的阴影更少。由于IPVD中的铜中性成分较大,因此IPVD侧壁沉积物的厚度变化大于HPM。随着沉积在特征底部的金属再沉积到侧壁上,晶片功率的增加在两个系统中都增加了侧壁覆盖率并降低了特征底部覆盖率。随着IPVD中线圈功率的增加,Cu〜+分数增加而Cu中性分数减少。随着更多的铜作为聚焦离子进入特征区,底部和侧壁的覆盖率都会增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号