首页> 外文期刊>Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures >Gate etch process model for static random access memory bit cell and FinFET construction
【24h】

Gate etch process model for static random access memory bit cell and FinFET construction

机译:静态随机存取存储位单元的栅极蚀刻工艺模型和FinFET构造

获取原文
获取原文并翻译 | 示例
           

摘要

A reactor/feature/lithography modeling suite has been developed to study the gate etch process. The gate etch process study consists of an eight step process designed to etch through a hard mask (HM)/antireflective coating/polysilicon gate stack and a 22+ step modeled process for FinFET (field effect transistor) manufacture. Coupling to a lithography model allows for a study of how a static random access memory (SRAM) bit cell layout transfers into the gate stack during the gate etch process. The lithography model calculates a three-dimensional (3D) photoresist (PR) profile using the photomask, illumination conditions, and a PR development model. The 3D PR profile is fed into the feature model, Papaya, as the initial PR etch mask condition. The study of the cumulative effect of the gate etch process required to transfer a photomask layout into a gate stack allows for a better understanding of the impact one step in the gate etch process can have on subsequent steps in the process. Studies of pattern transfer of a SRAM bit cell into a gate stack have shown that more edge movement occurs at line ends than at line sides. The line ends are more exposed to incoming etchants and have less opportunity for passivant buildup from the etching wafer than along line sides. An increase in sidewall slope at line ends during the trim and HM etch is observed experimentally and predicted by the model. The slope at line ends during trim and HM etch is more prevalent for narrow ends versus the wider "contact" ends. The lower the PR etch mask height after the HM etch step, the larger the angle seen at line ends which increases the line end pullback. So, a correlation exists between higher wafer power during the HM etch and line end pullback. Passivant formation at the polysilicon sidewall during the main etch/soft landing/overetch polysilicon etch sequence can straighten the profile as well as cause hourglassing and trapezoidal profiles. Passivant thickness, passivant deposition rate, as well as the passivant to polysilicon etch ratio all control this profile behavior. Increased passivation levels also have the tendency to increase linewidth roughness. In FinFET manufacture the gate etch needs to account for the increased topography introduced by the fins. (c) 2006 American Vacuum Society.
机译:已经开发了反应器/特征/光刻建模套件来研究栅极蚀刻工艺。栅极蚀刻工艺研究包括八步工艺(设计用于蚀刻硬掩模(HM)/抗反射涂层/多晶硅栅叠层)和22步建模的FinFET(场效应晶体管)制造工艺。耦合到光刻模型可以研究在栅极蚀刻过程中静态随机存取存储器(SRAM)位单元布局如何转移到栅极堆栈中。光刻模型使用光掩模,照明条件和PR显影模型计算三维(3D)光刻胶(PR)轮廓。将3D PR配置文件作为初始PR蚀刻掩模条件输入到特征模型Papaya中。对将光掩模布局转移到栅极堆叠中所需的栅极蚀刻工艺的累积效应的研究,可以更好地理解栅极蚀刻工艺中的一个步骤可能会对工艺中后续步骤产生的影响。对SRAM位单元到栅极堆叠中的图形转移的研究表明,线端比线端发生的边缘移动更多。与沿线的侧面相比,线的末端更多地暴露于进入的蚀刻剂中,并且从蚀刻晶片上形成钝化剂的机会更少。在修整和HM蚀刻过程中,观察到线末端的侧壁坡度增加,并通过模型进行预测。在修整和HM蚀刻过程中,线端的斜率比窄的“接触”端更普遍。在HM蚀刻步骤之后,PR蚀刻掩模的高度越低,在线端看到的角度越大,这会增加线端的拉回。因此,在HM蚀刻期间较高的晶片功率与线端拉回之间存在相关性。在主刻蚀/软着陆/过刻蚀多晶硅刻蚀过程中,在多晶硅侧壁处形成钝化剂会拉直轮廓,并引起沙漏形和梯形轮廓。钝化剂的厚度,钝化剂的沉积速率以及钝化剂与多晶硅的蚀刻率都控制着这种轮廓行为。增加的钝化水平也具有增加线宽粗糙度的趋势。在FinFET制造中,栅极蚀刻需要考虑鳍片所引起的形貌增加。 (c)2006年美国真空学会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号