首页> 外文期刊>Journal of Theoretical Probability >Almost Sure Limit of the Smallest Eigenvalue of Some Sample Correlation Matrices
【24h】

Almost Sure Limit of the Smallest Eigenvalue of Some Sample Correlation Matrices

机译:一些样本相关矩阵的最小特征值的几乎确定的极限

获取原文
获取原文并翻译 | 示例

摘要

Let X (n)=(X ij ) be a p×n data matrix, where the n columns form a random sample of size n from a certain p-dimensional distribution. Let R (n)=(ρ ij ) be the p×p sample correlation coefficient matrix of X (n), and be the sample covariance matrix of X (n), where is the mean vector of the n observations. Assuming that X ij are independent and identically distributed with finite fourth moment, we show that the smallest eigenvalue of R (n) converges almost surely to the limit as n→∞ and p→c∈(0,∞). We accomplish this by showing that the smallest eigenvalue of S (n) converges almost surely to . Random matrix - Sample correlation coefficient matrix - Sample covariance matrix - Smallest eigenvalueMathematics Subject Classification (2000) 60H15 - 62H99 Wang Zhou was partially supported by an NUS grant R-155-000-083-112.
机译:令X (n) =(X ij )是一个p×n数据矩阵,其中n列根据某个p维分布形成大小为n的随机样本。设R (n) =(ρ ij )是X (n)的p×p样本相关系数矩阵,并作为样本X (n)的协方差矩阵,其中n是观测值的均值向量。假设X ij 是独立的并且在有限的第四矩处均等分布,我们证明R (n)的最小特征值几乎可以肯定地收敛到极限,即n→∞和p / n→c∈(0,∞)。我们通过证明S (n)的最小特征值几乎肯定收敛到来完成此操作。随机矩阵-样本相关系数矩阵-样本协方差矩阵-最小特征值数学主题分类(2000)60H15-62H99 NUS授予R-155-000-083-112部分支持了王舟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号