首页> 外文期刊>Journal of the American Chemical Society >Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate
【24h】

Primary Nucleation-Dominated Chemical Vapor Deposition Growth for Uniform Graphene Monolayers on Dielectric Substrate

机译:介电基底上均匀石墨烯单层的主要成核为主的化学气相沉积生长

获取原文
获取原文并翻译 | 示例
           

摘要

Direct chemical vapor deposition growth of high quality graphene on dielectric substrates holds great promise for practical applications in electronics and optoelectronics. However, graphene growth on dielectrics always suffers from the issues of inhomogeneity and/or poor quality. Here, we first reveal that a novel precursor-modification strategy can successfully suppress the secondary nucleation of graphene to evolve ultrauniform graphene monolayer film on dielectric substrates. A mechanistic study indicates that the hydroxylation of silica substrate weakens the binding between graphene edges and substrate, thus realizing the primary nucleation-dominated growth. Field-effect transistors based on the graphene films show exceptional electrical performance with the charge carrier mobility up to 3800 cm(2) V-1 s(-1) in air, which is much higher than those reported results of graphene films grown on dielectrics.
机译:高质量石墨烯在介电基体上的直接化学气相沉积生长为电子和光电领域的实际应用带来了广阔前景。然而,电介质上石墨烯的生长总是遭受不均匀和/或质量差的问题。在这里,我们首先揭示了一种新颖的前体修饰策略可以成功地抑制石墨烯的二次成核,从而在介电基体上形成超均匀的石墨烯单层膜。机理研究表明,二氧化硅基质的羟基化作用削弱了石墨烯边缘与基质之间的结合,从而实现了主要的成核为主的生长。基于石墨烯薄膜的场效应晶体管在空气中的电荷载流子迁移率高达3800 cm(2)V-1 s(-1)时显示出卓越的电性能,这远远高于报道的在电介质上生长的石墨烯薄膜的结果。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第28期|11004-11008|共5页
  • 作者单位

    Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Beijing Key Lab Ion Liquids Clean Proc, Inst Proc Engn, Beijing 100190, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China;

    Univ Sci & Technol Beijing, Sch Mat Sci & Engn, Beijing 100083, Peoples R China;

    Tsinghua Univ, Dept Engn Mech, Appl Mech Lab, Beijing 100084, Peoples R China|Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China;

    Chinese Acad Sci, Beijing Natl Lab Mol Sci, CAS Res Educ Ctr Excellence Mol Sci, Inst Chem, Beijing 100190, Peoples R China|Univ Chinese Acad Sci, Sch Chem Sci, Beijing 100049, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号