...
首页> 外文期刊>Journal of the American Chemical Society >Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein
【24h】

Photoactivation Mechanism, Timing of Protein Secondary Structure Dynamics and Carotenoid Translocation in the Orange Carotenoid Protein

机译:橙色类胡萝卜素蛋白的光激活机理,蛋白二级结构动力学的时机和类胡萝卜素易位

获取原文
获取原文并翻译 | 示例
           

摘要

The orange carotenoid protein (OCP) is a two-domain photoactive protein that noncovalently binds an echinenone (ECN) carotenoid and mediates photoprotection in cyanobacteria. In the dark, OCP assumes an orange, inactive state known as OCPO; blue light illumination results in the red active state, known as OCPR. The OCPR state is characterized by large-scale structural changes that involve dissociation and separation of C-terminal and N-terminal domains accompanied by carotenoid translocation into the N-terminal domain. The mechanistic and dynamic-structural relations between photon absorption and formation of the OCPR state have remained largely unknown. Here, we employ a combination of time-resolved UV-visible and (polarized) mid-infrared spectroscopy to assess the electronic and structural dynamics of the carotenoid and the protein secondary structure, from femtoseconds to 0.5 ms. We identify a hereto unidentified carotenoid excited state in OCP, the so-called S* state, which we propose to play a key role in breaking conserved hydrogen-bond interactions between carotenoid and aromatic amino acids in the binding pocket. We arrive at a comprehensive reaction model where the hydrogen-bond rupture with conserved aromatic side chains at the carotenoid beta 1-ring in picoseconds occurs at a low yield of 1%, whereby the beta 1-ring retains a trans configuration with respect to the conjugated pi-electron chain. This event initiates structural changes at the N-terminal domain in 1 mu s, which allow the carotenoid to translocate into the N-terminal domain in 10 mu s. We identified infrared signatures of helical elements that dock on the C-terminal domain beta-sheet in the dark and unfold in the light to allow domain separation. These helical elements do not move within the experimental range of 0.5 ms, indicating that domain separation occurs on longer time scales, lagging carotenoid translocation by at least 2 decades of time.
机译:橙色类胡萝卜素蛋白(OCP)是一个两个域的光敏蛋白,可非共价结合海胆烯酮(ECN)类胡萝卜素并介导蓝细菌中的光保护作用。在黑暗中,OCP处于橙色的非活动状态,称为OCPO;蓝光照明导致红色激活状态,称为OCPR。 OCPR状态的特征是大规模的结构变化,涉及C端和N端结构域的解离和分离,并伴随类胡萝卜素易位到N端结构域。光子吸收与OCPR态形成之间的机械和动态结构关系仍然未知。在这里,我们采用时间分辨紫外可见和(偏振)中红外光谱的组合来评估类胡萝卜素和蛋白质二级结构的电子和结构动力学,从飞秒到0.5毫秒。我们在OCP中确定了一个迄今未确定的类胡萝卜素激发态,即所谓的S *状态,我们提议在打破结合口袋中类胡萝卜素与芳香族氨基酸之间的保守氢键相互作用中发挥关键作用。我们得到了一个综合的反应模型,其中在皮秒内在类胡萝卜素β1环上带有保守的芳香族侧链的氢键断裂发生在皮秒内,发生率低于1%,因此β1环相对于共轭π电子链。此事件会在1毫秒内在N末端域引发结构变化,从而使类胡萝卜素在10毫秒内转移至N末端域。我们鉴定了螺旋元件的红外特征,这些螺旋元件在黑暗中停靠在C末端域β-折叠层上,在光下展开以进行域分离。这些螺旋元素不在0.5 ms的实验范围内移动,表明域分离发生在更长的时间范围内,比类胡萝卜素易位滞后了至少20年的时间。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第1期|520-530|共11页
  • 作者单位

    Vrije Univ, Fac Sci, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands;

    Vrije Univ, Fac Sci, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands;

    Univ Paris Saclay, Univ Paris Sud, CNRS, I2BC,CEA, F-91198 Gif Sur Yvette, France|CEA, Inst Joliot, F-91191 Gif Sur Yvette, France;

    Univ Paris Saclay, Univ Paris Sud, CNRS, I2BC,CEA, F-91198 Gif Sur Yvette, France|CEA, Inst Joliot, F-91191 Gif Sur Yvette, France;

    Vrije Univ, Fac Sci, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands;

    Univ Paris Saclay, Univ Paris Sud, CNRS, I2BC,CEA, F-91198 Gif Sur Yvette, France|CEA, Inst Joliot, F-91191 Gif Sur Yvette, France;

    Vrije Univ, Fac Sci, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号