首页> 外文期刊>Journal of the American Chemical Society >Oxygen Self-Doping in Hollandite-Type Vanadium Oxyhydroxide Nanorods
【24h】

Oxygen Self-Doping in Hollandite-Type Vanadium Oxyhydroxide Nanorods

机译:锰矿型羟基氧化钒纳米棒中的氧自掺杂

获取原文
获取原文并翻译 | 示例
           

摘要

A nonaqueous liquid-phase route involving the reaction of vanadium oxychloride with benzyl alcohol leads to the formation of single-crystalline and semiconducting VO_(1.52)(OH)0.77 nanorods with an ellipsoidal morphology, up to 500 nm in length and typically about 100 nm in diameter. Composition, structure, and morphology were thoroughly analyzed by neutron and synchrotron powder X-ray diffraction as well as by different electron microscopy techniques (SEM, (HR)TEM, EDX, and SAED). The data obtained point to a hollandite-type structure which, unlike other vanadates, contains oxide ions in the channels along the c-axis, with hydrogen atoms attached to the edge-sharing oxygen atoms, forming OH groups. According to structural probes and magnetic measurements (1.94 μ_B/V), the formal valence of vanadium is +3.81 (V~(4+)/V~(3+) atomic ratio ≈ 4). The experimentally determined density of 3.53(5) g/cm~3 is in good agreement with the proposed structure and nonstoichiometry. The temperature-dependent DC electrical conductivity exhibits Arrhenius-type behavior with a band gap of 0.64 eV. The semiconducting behavior is interpreted in terms of electron hopping between vanadium cations of different valence states (small polaron model). Ab initio density-functional calculations with a local spin density approximation including orbital potential (LSDA + U with an effective U value of 4 eV) have been employed to extract the electronic structure. These calculations propose, on the one hand, that the electronic conductivity is based on electron hopping between neighboring V~(3+) and V~(4+) sites, and, on the other hand, that the oxide ions in the channels act as electron donors, increasing the fraction of V~(3+) cations, and thus leading to self-doping. Experimental and simulated electron energy-loss spectroscopy data confirm both the presence of V~(4+) and the validity of the density-of-states calculation. Temperature-dependent magnetic susceptibility measurements indicate strongly frustrated antiferromagnetic interactions between the vanadium ions. A model involving the charge order of the V~(3+) sites is proposed to account for the observed formation of the magnetic moment below 25 K.
机译:涉及氯氧化钒与苄醇反应的非水液相路线会导致形成椭圆形形态的单晶和半导电VO_(1.52)(OH)0.77纳米棒,长度最大为500 nm,通常约为100 nm在直径上。通过中子和同步加速器粉末X射线衍射以及不同的电子显微镜技术(SEM,(HR)TEM,EDX和SAED)对成分,结构和形态进行了全面分析。所获得的数据指向了一种钙铝石型结构,与其他钒酸盐不同,该结构沿c轴的通道中包含氧化离子,氢原子附着在边缘共享的氧原子上,形成OH基团。根据结构探针和磁性测量结果(1.94μB/ V),钒的形式化合价为+3.81(V〜(4 +)/ V〜(3+)原子比≈4)。实验确定的密度为3.53(5)g / cm〜3,与拟议的结构和非化学计量关系很好。随温度变化的直流电导率表现出Arrhenius型行为,带隙为0.64 eV。根据不同价态的钒阳离子(小极化子模型)之间的电子跳跃来解释半导体行为。具有局部自旋密度近似值(包括轨道电势(有效U值为4 eV的LSDA + U))的从头算密度函数计算已用于提取电子结构。这些计算一方面表明,电子传导性基于相邻V〜(3+)和V〜(4+)位之间的电子跳跃,另一方面,通道中的氧化物离子起作用作为电子给体,增加了V〜(3+)阳离子的比例,从而导致自掺杂。实验和模拟的电子能量损失谱数据证实了V〜(4+)的存在以及态密度计算的有效性。与温度有关的磁化率测量结果表明,钒离子之间的反铁磁相互作用极强。提出了一个涉及V〜(3+)位点电荷顺序的模型,以解释观察到的25 K以下磁矩的形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号