首页> 外文期刊>Journal of the American Chemical Society >Length Dependence for Intramolecular Energy Transfer in Three- and Four-Color Donor-Spacer-Acceptor Arrays
【24h】

Length Dependence for Intramolecular Energy Transfer in Three- and Four-Color Donor-Spacer-Acceptor Arrays

机译:三色和四色供体-间隔体-受体阵列中分子内能量转移的长度依赖性

获取原文
获取原文并翻译 | 示例
       

摘要

A series of donor-spacer-acceptor triads has been synthesized and fully characterized. Both donor and acceptor units are built from boron dipyrromethene (BODIPY) dyes but they differ in their respective conjugation lengths, and thereby offer quite disparate optical properties. The spacer units comprise an oligomer of 1,4-phenylene-diethynylene repeat units and allow the boron-boron separation distance to be varied progressively from 18 to 38 A. A notable feature of this series is that each subunit can be selectively excited with monochromatic light. Highly efficacious electronic energy transfer (EET) occurs from the first-excited singlet state localized on the conventional BODIPY dye to its counterpart resident on the expanded BODIPY-based nucleus, but the rate constant follows a nonlinear evolution with separation distance. Overall, the rate of EET falls by only a factor of 4-fold on moving from the shortest to the longest spacer. This shallow length dependence is,a consequence of the energy gap between donor and spacer units becoming smaller as the molecular length increases. Interestingly, a simple relationship exists between the measured electronic resistance of the spacer unit and the Huang-Rhys factor determined by emission spectroscopy. Both parameters relate to the effective conjugation length. Direct illumination of the spacer unit leads to EET to both terminals, followed by EET from conventional BODIPY to the expanded version. In each case, EET to the expanded dye involves initial population of the second-singlet excited state, whereas transfer from spacer to the conventional BODIPY dye populates the S_2 state for shorter lengths but the S_1 state for the longer analogues. The rate of EET from spacer to conventional BODIPY dye, as measured for the corresponding molecular dyads, is extremely fast (>10~(11) s~(-1)) and scales with the spectral overlap integral. The relative partitioning of EET from the spacer to each terminal is somewhat sensitive to the molecular length, with the propensity to populate the conventional BODIPY dye changing from 65% for N = 0 to 45% for N = 2. The most likely explanation for this behavior can be traced to the disparate spectral overlap integrals for the two dyes. These systems have been complemented by a molecular tetrad in which pyrene residues replace the fluorine atoms present on the conventional BODIPY-based dye. Here, rapid EET occurs from pyrene to the BODIPY dye and is followed by slower, long-range EET to the opposite terminal. Such materials are seen as highly attractive solar concentrators when dispersed in transparent plastic media and used under conditions where both inter- and intramolecular EET operate.
机译:已经合成了一系列供体-间隔子-受体三联体并对其进行了充分表征。供体和受体单元均由硼二吡咯亚甲基(BODIPY)染料构建,但它们的共轭长度不同,因此提供了完全不同的光学性能。间隔单元包括1,4-亚苯基-二亚乙炔基重复单元的低聚物,并允许硼-硼分离距离从18到38 A逐渐变化。该系列的显着特征是每个亚单元都可以被单色选择性地激发。光。高效的电子能量转移(EET)从位于常规BODIPY染料上的第一激发单重态发生到驻留在扩展的基于BODIPY的核上的对等态,但速率常数遵循具有分离距离的非线性演化。总体而言,从最短的垫片到最长的垫片,EET的速率仅下降4倍。这种浅的长度依赖性是供体和间隔基单元之间的能隙随着分子长度的增加而变小的结果。有趣的是,在测得的间隔单元的电子电阻与通过发射光谱法确定的Huang-Rhys因子之间存在简单的关系。这两个参数都与有效共轭长度有关。隔离器单元的直接照明导致两个端子都经过EET,然后由传统的BODIPY扩展到EET。在每种情况下,向扩展染料的EET都涉及第二个单激发态的初始种群,而从间隔子向常规BODIPY染料的转移会在较短的长度内填充S_2状态,而对于较长的类似物则填充S_1状态。对于相应的分子二元组,从间隔物到常规BODIPY染料的EET速率非常快(> 10〜(11)s〜(-1)),并且与光谱重叠积分成比例。 EET从间隔基到每个末端的相对分配对分子长度有些敏感,填充常规BODIPY染料的倾向从N = 0的65%变为N = 2的45%。行为可以追溯到两种染料的不同光谱重叠积分。这些系统已被分子四元体所补充,其中pyr残基取代了传统的基于BODIPY的染料上存在的氟原子。在这里,快速的EET从pyr到BODIPY染料发生,然后是较慢的远程EET到相反的末端。当将这些材料分散在透明塑料介质中并在分子间和分子内EET均能工作的条件下使用时,这些材料被视为极具吸引力的太阳能集中器。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2009年第37期|13375-13386|共12页
  • 作者单位

    Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom;

    Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom;

    Molecular Photonics Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom;

    Laboratoire de Chimie Organique et Spectroscopies Avancees (LCOSA), Ecole Europeenne de Chimie, Polymeres et Materiaux, Universite de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France;

    Laboratoire de Chimie Organique et Spectroscopies Avancees (LCOSA), Ecole Europeenne de Chimie, Polymeres et Materiaux, Universite de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France;

    Laboratoire de Chimie Organique et Spectroscopies Avancees (LCOSA), Ecole Europeenne de Chimie, Polymeres et Materiaux, Universite de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 03:17:17

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号